Advanced Search+
FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
Citation: FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03

Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide

Funds: supported by the Fundamental Research Funds for Central Universities of China (No.ZYGX2010J049)
More Information
  • Received Date: October 26, 2011
  • Plasma filling can dramatically improve the performance of high power microwave devices. The characteristics of high-power microwave propagation along plasma filled waveguides in an axial magnetic field are analyzed in this paper, and the ponderomotive force effect of high power microwave is taken into consideration. Theoretical analysis and preliminary numerical calculations are performed. The analyses show that the ponderomotive effect would change the plasma density, distribution of microwave field intensity, and dispersion of wave propagation. The higher the microwave power, the stronger the ponderomotive effect. In different magnetic fields, the ponderomotive effect is different.
  • Related Articles

    [1]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [2]H SOBHANI, H R SABOUHI, S FEILI, E DADAR. Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide[J]. Plasma Science and Technology, 2017, 19(10): 105504. DOI: 10.1088/2058-6272/aa8089
    [3]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [4]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [5]XIAO Jixiong(肖集雄), CHEN Shixiu(陈仕修), TIAN Wei(田微), CHEN Kun(陈堃). Influence of the Beam Self-Fields on the Dispersion Characteristics of EM Waves in a Dielectric Waveguide Filled with Plasma[J]. Plasma Science and Technology, 2014, 16(1): 1-5. DOI: 10.1088/1009-0630/16/1/01
    [6]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [7]SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14
    [8]WANG Teng (王腾), GAO Xiangdong (高向东), Katayama SEIJI, JIN Xiaoli (金小莉). Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding[J]. Plasma Science and Technology, 2012, 14(3): 245-251. DOI: 10.1088/1009-0630/14/3/11
    [9]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.

Catalog

    Article views (221) PDF downloads (1205) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return