Advanced Search+
Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688
Citation: Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688

Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air

Funds: This work was supported by China National Natural Science Foundation of Shaanxi Province (No. 2020JQ-643), China Postdoctoral Science Foundation funded project (No. 2019M653545), and the Fundamental Research Funds for the Central Universities, China (No. JB210510).
More Information
  • Received Date: April 14, 2021
  • Revised Date: May 26, 2021
  • Accepted Date: May 27, 2021
  • The structure and propagation of the plasma in air breakdown driven by high-power microwave have attracted great interest. This paper focuses on the microwave amplitude and frequency dependence of plasma formation at atmospheric pressure using one two-dimensional model, which is based on Maxwell's equations coupled with plasma fluid equations. In this model, we adopt the effective electron diffusion coefficient, which can describe well the change from free diffusion in a plasma front to ambipolar diffusion in the bulk plasma. The filamentary plasma arrays observed in experiments are well reproduced in the simulations. The density and propagation speed of the plasma from the simulations are also close to the corresponding experimental data. The size of plasma filament parallel to the electric field decreases with increasing frequency, and it increases with the electric field amplitude. The distance between adjacent plasma filaments is close to one-quarter wavelength under different frequencies and amplitudes. The plasma propagation speed shows little change with the frequency, and it increases with the amplitude. The variations of plasma structure and propagation with the amplitude and frequency are due to the change in the distribution of the electric field.
  • [1]
    Zuo C-Y et al 2018 Acta Phys. Sin. 67 225201 (in Chinese)
    [2]
    Zhang C et al 2019 Plasma Sources Sci. Technol. 28 064001
    [3]
    Zhang J W et al 2020 J. Appl. Phys. 128 143301
    [4]
    Wang G et al 2020 Plasma Sci. Technol. 22 015404
    [5]
    Yao J F et al 2020 Plasma Sci. Technol. 22 034006
    [6]
    Liu Y et al 2019 Plasma Sci. Technol. 21 015402
    [7]
    Zhao P C and Guo L X 2018 IEEE Trans. Plasma Sci. 46 489
    [8]
    Semenov V E et al 2016 Phys. Plasmas 23 073109
    [9]
    Beeson S R et al 2014 IEEE Trans. Plasma Sci. 42 3450
    [10]
    Chang C et al 2014 Phys. Rev. E 90 063107
    [11]
    Morales K P et al 2006 IEEE Trans. Dielectr. Electr. Insul.13 803
    [12]
    Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
    [13]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [14]
    Schaub S C et al 2016 Phys. Plasmas 23 083512
    [15]
    Nam S K and Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004
    [16]
    Boeuf J P, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett.104 015002
    [17]
    Zhou Q H and Dong Z W 2011 Appl. Phys. Lett. 98 161504
    [18]
    Kourtzanidis K, Boeuf J P and Rogier F 2014 Phys. Plasmas 21 123513
    [19]
    Zhao P C, Guo L X and Shu P P 2016 Phys. Plasmas 23 092105
    [20]
    Takahashi M and Komurasaki K 2018 Adv. Phys: X 3 1417744
    [21]
    Hidaka Y et al 2009 Phys. Plasmas 16 055702
    [22]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [23]
    Chaudhury B, Boeuf J P and Zhu G Q 2010 Phys. Plasma 17 123505
    [24]
    Zhu G Q et al 2011 Plasma Sources Sci. Technol. 20 035007
    [25]
    Zhao P C et al 2014 Chin. Phys. B 23 055101
    [26]
    Woo W and DeGroot J 1984 Phys. Fluids 27 475
    [27]
    Chaudhury B and Boeuf J P 2010 IEEE Trans. Plasma Sci.38 2281
    [28]
    Mur G et al 1981 IEEE Trans. Electromagn. Compat. EMC23 377
    [29]
    Vikharev A L et al 1988 Sov. Phys. JETP 67 724
  • Related Articles

    [1]Kai ZHAO (赵凯), Baigang SUN (孙佰刚), Yongji LU (卢永吉), Feng LI (李锋), Yongbo LIU (刘永波), Xiangbin LIU (刘祥彬), Kefu WANG (王可夫). Experimental investigation on plasma jet deflection with magnetic fluid control based on PIV measurement[J]. Plasma Science and Technology, 2019, 21(2): 25503-025503. DOI: 10.1088/2058-6272/aae09b
    [2]Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369
    [3]Zhigang LI (李志刚), Zhongcai YUAN (袁忠才), Jiachun WANG (汪家春), Jiaming SHI (时家明). Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2018, 20(2): 25401-025401. DOI: 10.1088/2058-6272/aa93f8
    [4]WANG Yu (王玉), SU Dandan (苏丹丹), LI Yingjun (李英骏). Hydrodynamics of Exploding Foil X-Ray Lasers with Time-Dependent Ionization Effect[J]. Plasma Science and Technology, 2016, 18(12): 1181-1185. DOI: 10.1088/1009-0630/18/12/07
    [5]WANG Guibin (王桂滨), ZHANG Lin (张林), HE Feng (何锋), OUYANG Jiting (欧阳吉庭). Numerical Study on Microwave Scattering by Various Plasma Objects[J]. Plasma Science and Technology, 2016, 18(8): 791-797. DOI: 10.1088/1009-0630/18/8/01
    [6]MA Wendong(马文东), SHAN Jiafang(单家方), XU Handong(徐旵东), HU Huaichuan(胡怀传), WANG Mao(王茂), WU Zege(吴则格). Power Control and Data Acquisition System for High Power Microwave Test Bench[J]. Plasma Science and Technology, 2014, 16(4): 415-419. DOI: 10.1088/1009-0630/16/4/21
    [7]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [8]FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03
    [9]WANG Teng (王腾), GAO Xiangdong (高向东), Katayama SEIJI, JIN Xiaoli (金小莉). Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding[J]. Plasma Science and Technology, 2012, 14(3): 245-251. DOI: 10.1088/1009-0630/14/3/11
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.
  • Cited by

    Periodical cited type(6)

    1. Liu, G., Chen, C., Xia, Y. et al. Numerical study on the effect of shielding gas on atmospheric pressure plasma jet interacting with target surface. Physica Scripta, 2025, 100(4): 045609. DOI:10.1088/1402-4896/adc0ca
    2. Xu, J., He, Q., Zhang, X. et al. Investigation into the role of Si and SiC phases in RB-SiC ceramics surface modified ultra-precision grinding. Materials Science in Semiconductor Processing, 2024. DOI:10.1016/j.mssp.2024.108786
    3. Jia, P., Wan, W., Zhang, L. et al. Numerical simulation on the behavior of a negative streamer encountered with a cloud of positive ions in atmospheric pressure plasma jet. AIP Advances, 2023, 13(6): 065005. DOI:10.1063/5.0155359
    4. Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7
    5. Cui, X., Xu, Z., Zhou, Y. et al. Deposition of superhydrophobic film on cylindrical ceramic with atmospheric pressure plasma jet. Surface and Coatings Technology, 2022. DOI:10.1016/j.surfcoat.2022.129066
    6. Boudjadar, A., Bouanaka, F., Rebiaï, S. Physical phenomena of a cold plasma jet model at atmospheric pressure. Physica Scripta, 2022, 97(12): 125609. DOI:10.1088/1402-4896/aca2fb

    Other cited types(0)

Catalog

    Article views (129) PDF downloads (144) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return