Advanced Search+
T HAPPEL, W KASPAREK, P HENNEQUIN, K HÖFLER, C HONORÉ, the ASDEX Upgrade Team. Design of a variable frequency comb reflectometer system for the ASDEX Upgrade tokamak[J]. Plasma Science and Technology, 2020, 22(6): 64002-064002. DOI: 10.1088/2058-6272/ab618c
Citation: T HAPPEL, W KASPAREK, P HENNEQUIN, K HÖFLER, C HONORÉ, the ASDEX Upgrade Team. Design of a variable frequency comb reflectometer system for the ASDEX Upgrade tokamak[J]. Plasma Science and Technology, 2020, 22(6): 64002-064002. DOI: 10.1088/2058-6272/ab618c

Design of a variable frequency comb reflectometer system for the ASDEX Upgrade tokamak

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission
More Information
  • Received Date: September 30, 2019
  • Revised Date: December 10, 2019
  • Accepted Date: December 11, 2019
  • Comb reflectometers offer the advantage of measuring several radial positions in plasma simultaneously. This allows for the investigation of fast timescales during L-H transitions, I-phases, I-mode bursts, transients during heat wave propagation, etc. A drawback of many present-day systems is that they use a fixed frequency difference between the probing frequencies. Hence, although the central probing frequency can be varied, the probing frequency difference is usually fixed. The new design presented in this work uses an advanced microwave generation and detection scheme, which allows for arbitrary probing frequencies and probing frequency separations.
  • [1]
    Hartfuss H J et al 1994 Rev. Sci. Instrum. 65 2284
    [2]
    Cupido L, Sánchez J and Estrada T 2004 Rev. Sci. Instrum.75 3865
    [3]
    Oyama N et al 2011 Plasma Fusion Res. 6 1402014
    [4]
    Hillesheim J C et al 2009 Rev. Sci. Instrum. 80 083507
    [5]
    Peebles W A et al 2010 Rev. Sci. Instrum. 81 10D902
    [6]
    Crocker N A et al 2011 Plasma Phys. Control. Fusion 53 105001
    [7]
    Tokuzawa T et al 2014 Plasma Fusion Res. 9 1402149
    [8]
    Shi Z B et al 2016 Rev. Sci. Instrum. 87 113501
    [9]
    Soga R et al 2016 J. Instrum. 11 C02009
    [10]
    Hu J Q et al 2017 Rev. Sci. Instrum. 88 073504
    [11]
    Tokuzawa T et al 2018 Rev. Sci. Instrum. 89 10H118
    [12]
    Molina Cabrera P et al 2018 Rev. Sci. Instrum. 89 083503
    [13]
    Wang M Y et al 2018 Rev. Sci. Instrum. 89 093501
    [14]
    Feng X et al 2019 Rev. Sci. Instrum. 90 024704
    [15]
    Sabot R, Hennequin P and Colas L 2009 Fusion Sci. Technol.56 1253
  • Related Articles

    [1]Xiaoming ZHONG, Xiaolan ZOU, Chu ZHOU, Adi LIU, Ge ZHUANG, Xi FENG, Jin ZHANG, Jiaxu JI, Hongrui FAN, Shen LIU, Shifan WANG, Liutian GAO, Wenxiang SHI, Tao LAN, Hong LI, Jinlin XIE, Wenzhe MAO, Zixi LIU, Wandong LIU. Comparison of methods for turbulence Doppler frequency shift calculation in Doppler reflectometer[J]. Plasma Science and Technology, 2023, 25(9): 095104. DOI: 10.1088/2058-6272/acc8ba
    [2]Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2
    [3]C LECHTE, G D CONWAY, TGÖRLER, T HAPPEL, the ASDEXUpgrade Team. Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D[J]. Plasma Science and Technology, 2020, 22(6): 64006-064006. DOI: 10.1088/2058-6272/ab7ce8
    [4]A KRÄMER-FLECKEN, X HAN, M OTTE, G ANDA, S A BOZHENKOV, D DUNAI, G FUCHERT, J GEIGER, O GRULKE, E PASCH, E R SCOTT, E TRIER, M VÉCSEI, T WINDISCH, S ZOLETNIK, the W7-X Team. Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations[J]. Plasma Science and Technology, 2020, 22(6): 64004-064004. DOI: 10.1088/2058-6272/ab770c
    [5]Ting WU (吴婷), Lin NIE (聂林), Min XU (许敏), Jie YANG (阳杰), Zhipeng CHEN (陈志鹏), Yuejiang SHI (石跃江), Nengchao WANG (王能超), Da LI (李达), Rui KE (柯锐), Yi YU (余羿), Shaobo GONG (龚少博), Ting LONG (龙婷), Yihang CHEN (陈逸航), Bing LIU (刘兵), J-TEXT Team. Effect of resonant magnetic perturbation on boundary plasma turbulence and transport on J-TEXT tokamak[J]. Plasma Science and Technology, 2019, 21(12): 125102. DOI: 10.1088/2058-6272/ab4369
    [6]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [7]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(10)

    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484
    3. Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566
    4. Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131
    5. Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949
    6. Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271
    7. Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588
    8. Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848
    9. Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744
    10. Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915

    Other cited types(0)

Catalog

    Article views (179) PDF downloads (68) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return