Advanced Search+
Ruishuang ZHONG (钟蕊霜), Su ZHAO (赵谡), Dengming XIAO (肖登明), Hui WANG (王辉), Xiuchen JIANG (江秀臣), Zhongmin YU (余钟民), Yunkun DENG (邓云坤). Investigation of the performance of CF3I/c-C4F8/N2 and CF3I/c-C4F8/CO2 gas mixtures from electron transport parameters[J]. Plasma Science and Technology, 2020, 22(5): 55402-055402. DOI: 10.1088/2058-6272/ab62e6
Citation: Ruishuang ZHONG (钟蕊霜), Su ZHAO (赵谡), Dengming XIAO (肖登明), Hui WANG (王辉), Xiuchen JIANG (江秀臣), Zhongmin YU (余钟民), Yunkun DENG (邓云坤). Investigation of the performance of CF3I/c-C4F8/N2 and CF3I/c-C4F8/CO2 gas mixtures from electron transport parameters[J]. Plasma Science and Technology, 2020, 22(5): 55402-055402. DOI: 10.1088/2058-6272/ab62e6

Investigation of the performance of CF3I/c-C4F8/N2 and CF3I/c-C4F8/CO2 gas mixtures from electron transport parameters

Funds: This work is supported by National Natural Science Foundation of China (No. 51337006).
More Information
  • Received Date: October 10, 2019
  • Revised Date: December 14, 2019
  • Accepted Date: December 16, 2019
  • CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas, owing to their excellent insulating performance. This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis, compared with SF6 gas mixtures. The results confirm that the critical electric field strength of CF3I/c-C4F8/70 % CO2 is greater than that of 30% SF6/70% CO2 when the CF3I content is greater than 17%. Moreover, a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field, and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures. The synergistic effects for CF3I/c-C4F8/70 % N2 were most obvious when the c-C4F8 content was approximately 20%, and for CF3I/c-C4F8/70 % CO2 when the c-C4F8 content was approximately 10%. On the basis of this research, CF3I/c-C4F8/70 % N2 shows better insulation performance when the c-C4F8 content is in the 15%–20% range. For CF3I/c-C4F8/70 % CO2, when the c-C4F8 content is in the 10%–15% range, the gas mixtures have excellent performance. Hence, these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.
  • [1]
    Deng Y K and Xiao D M 2013 Chin. Phys. B 22 035101
    [2]
    Li X W et al 2013 J. Phys. D: Appl. Phys. 46 345203
    [3]
    Jiao J T et al 2016 Plasma Sci. Technol. 18 554
    [4]
    Yokomizu Y, Ochiai R and Matsumura T 2009 J. Phys. D:Appl. Phys. 42 215204
    [5]
    Katagiri H et al 2008 IEEE Trans. Dielectr. Electr. Insul.15 1424
    [6]
    Liu X L et al 2008 J. Phys. D: Appl. Phys. 41 015206
    [7]
    Deng Y K, Xiao D M et al 2012 Eur. Phys. J. Appl. Phys. 57 20801
    [8]
    Yamamoto O et al 1995 IEEE Trans. Dielectr. Electr. Insul.2 292
    [9]
    Zhong R S et al 2018 IEEE Trans. Dielectr. Electr. Insul.25 1371
    [10]
    De Urquijo J et al 2007 J. Phys. D: Appl. Phys. 40 2205
    [11]
    Zhao S et al 2018 Plasma Sci. Technol. 20 065401
    [12]
    Wu B T et al 2006 J. Phys. D: Appl. Phys. 39 4204
    [13]
    Man L K, Deng Y K and Xiao D M 2017 High Voltage Eng.43 788 (in Chinese)
    [14]
    Xu L L et al 2017 High Voltage Eng. 43 721 (in Chinese)
    [15]
    Cheng Y et al 2017 High Voltage Eng. 43 795 (in Chinese)
    [16]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [17]
    Liu J F and Govinda Raju G R 1992 Can. J. Phys. 70 216
    [18]
    Allis W P 1982 Phys. Rev. A 26 1704
    [19]
    Hernández-Ávila J L, Basurto E and de Urquijo J 2002 J. Phys.D: Appl. Phys. 35 2264
    [20]
    Tagashira H, Sakai Y and Sakamoto S 1977 J. Phys. D: Appl.Phys. 10 1051
    [21]
    www.lxcat.net
    [22]
    Christophorou L G and Olthoff J K 2001 J. Phys. Chem. Ref.Data 30 449
    [23]
    Kimura M and Nakamura Y 2010 J. Phys. D: Appl. Phys. 43 145202
    [24]
    Hasegawa H et al 2009 Appl. Phys. Lett. 95 101504
    [25]
    Liu X L and Xiao D M 2007 Eur. Phys. J. Appl. Phys. 38 269
    [26]
    Yamaji M, Nakamura Y and Morokuma Y 2004 J. Phys. D:Appl. Phys. 37 432
    [27]
    De Urquijo J and Basurto E 2001 J. Phys. D: Appl. Phys.34 1352
  • Related Articles

    [1]Tao ZHU (竹涛), Wenjing BIAN (边文璟), Mingfeng MA (马名烽), Weili YE (叶维丽), Ruonan WANG (王若男), Xing ZHANG (张星). Influence of gas atmosphere on synergistic control of mercury and dioxin by nonthermal plasma[J]. Plasma Science and Technology, 2019, 21(4): 44006-044006. DOI: 10.1088/2058-6272/aaead7
    [2]Qiming LIN (林启明), Su ZHAO (赵谡), Dengming XIAO (肖登明), Baijie ZHOU (周柏杰). Breakdown characteristics of CF3I/N2/CO2 mixture in power frequency and lightning impulse voltages[J]. Plasma Science and Technology, 2019, 21(1): 15401-015401. DOI: 10.1088/2058-6272/aade83
    [3]Zhouming ZHANG (张洲铭), Zhaorui NI (倪兆瑞), Dengming XIAO (肖登明), Yizhou WU (吴亦舟). Insulation characteristics of triple mixtures of c-C4F8/N2/CO2 under lightning impulse voltage[J]. Plasma Science and Technology, 2018, 20(10): 105405. DOI: 10.1088/2058-6272/aace9d
    [4]Su ZHAO (赵谡), Yunkun DENG (邓云坤), Yuhao GAO (高于皓), Dengming XIAO (肖登明). Calculation and characteristic analysis on synergistic effect of CF3I gas mixtures[J]. Plasma Science and Technology, 2018, 20(6): 65401-065401. DOI: 10.1088/2058-6272/aaaadc
    [5]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [6]ZHAO Xiaoling (赵小令), JIAO Juntao (焦俊韬), XIAO Dengming (肖登明). Breakdown Electric Field of Hot 30% CF3I/CO2 Mixtures at Temperature of 300–3500 K During Arc Extinction Process[J]. Plasma Science and Technology, 2016, 18(11): 1095-1100. DOI: 10.1088/1009-0630/18/11/07
    [7]Amel E. A. ELABID, GUO Ying (郭颖), SHI Jianjun (石建军), DING Ke (丁可), ZHANG Jing (张菁). Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films[J]. Plasma Science and Technology, 2016, 18(4): 346-352. DOI: 10.1088/1009-0630/18/4/03
    [8]ZHAO Xiaoling (赵小令), JIAO Juntao (焦俊韬), LI Bing (李冰), XIAO Dengming (肖登明). The Electronegativity Analysis of c-C4F8 as a Potential Insulation Substitute of SF6 [J]. Plasma Science and Technology, 2016, 18(3): 292-298. DOI: 10.1088/1009-0630/18/3/13
    [9]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [10]XIAO Dengming (肖登明), DENG Yunkun (邓云坤). Determination of Electron Swarm Parameters in Pure CHF3 and CF4 by a Time-Resolved Method[J]. Plasma Science and Technology, 2013, 15(1): 25-29. DOI: 10.1088/1009-0630/15/1/05

Catalog

    Article views (116) PDF downloads (126) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return