Advanced Search+
Haidong LU (卢海东), Maogen SU (苏茂根), Qi MIN (敏琦), Shiquan CAO (曹世权), Siqi HE (何思奇), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models[J]. Plasma Science and Technology, 2020, 22(10): 105001. DOI: 10.1088/2058-6272/ab9889
Citation: Haidong LU (卢海东), Maogen SU (苏茂根), Qi MIN (敏琦), Shiquan CAO (曹世权), Siqi HE (何思奇), Chenzhong DONG (董晨钟), Yanbiao FU (符彦飙). Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models[J]. Plasma Science and Technology, 2020, 22(10): 105001. DOI: 10.1088/2058-6272/ab9889

Effect of dielectronic recombination on charge-state distribution in laser-produced plasma based on steady-state collisional-radiative models

Funds: This work is supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), National Natural Science Foundation of China (NSFC) (Grant Nos. 11904293, 11874051).
More Information
  • Received Date: March 06, 2020
  • Revised Date: May 28, 2020
  • Accepted Date: May 31, 2020
  • Armed with four different steady-state collisional-radiative (CR) models, we investigated the effect of dielectronic recombination (DR) on the charge-state distribution in laser-produced silicon plasma. To assess this effect, we performed a series of temporally resolved spectra of highly charged Si ions in the extreme ultraviolet region. Ab initio calculations of the DR rate coefficients were done for Si6+–Si4+ ions. We also analyzed the evolution of the collisional ionization, radiative recombination, three-body recombination, photo-ionization, and DR rate coefficients as a function of electron temperature. The electron temperature and electron density for different delay times were obtained by comparing the normalized experimental and simulated spectra. The ion fraction and average charge state from the four different CR models were also obtained. The results indicate that the DR process has a greater influence in the stage of plasma evolution that cannot be neglected in plasma diagnoses.
  • [1]
    Burgess A 1964 Astrophys. J. 139 776
    [2]
    Schippers S et al 2011 Phys. Rev. A 83 012711
    [3]
    Dubau J and Volonte S 1980 Rep. Prog. Phys. 43 199
    [4]
    Zatsarinny O et al 2003 Astron. Astrophys. 412 587
    [5]
    Jacobs V L et al 1989 Phys. Rev. A 39 2411
    [6]
    Peter T et al 1986 Phys. Rev. Lett. 57 1859
    [7]
    Fu Y B et al 2011 Phys. Rev. A 83 062708
    [8]
    Li B W et al 2012 Phys. Rev. A 85 052706
    [9]
    Kwon D H 2018 J. Quant. Spectrosc. Radiat. Transfer 208 64
    [10]
    Safronova U I et al 2008 J. Phys. B: At. Mol. Opt. Phys. 42 015001
    [11]
    Preval S P et al 2017 J. Phys. B: At. Mol. Opt. Phys. 50 105201
    [12]
    Song M Y et al 2008 J. Phys. Soc. Japan 77 064302
    [13]
    Su M G et al 2017 Sci. Rep. 7 45212
    [14]
    Duston D and Davis J 1980 Phys. Rev. A 21 1664
    [15]
    White J 2006 Opening the extreme ultraviolet lithography source bottleneck: developing a 13.5 nm laser-produced plasma source for the semiconductor industry PhD Thesis University College Dublin, Dublin, Ireland
    [16]
    Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
    [17]
    Burdt R A et al 2010 J. Appl. Phys. 107 043303
    [18]
    White J et al 2005 J. Appl. Phys. 98 113301
    [19]
    Su M G et al 2017 Phys Plasmas 24 043302
    [20]
    Chowdhury A et al 2005 Pramana—J. Phys. 64 141
    [21]
    Louzon E et al 2012 High Energy Density Phys. 8 81
    [22]
    Sinha B K et al 1999 J. Plasma Fusion Res. Ser. 2 406
    [23]
    Gupta G P and Sinha B K 1996 J. Appl. Phys. 79 619
    [24]
    Gupta G P and Sinha B K 1997 Phys. Rev. E 56 2104
    [25]
    Gu M F 2008 Can. J. Phys. 86 675
    [26]
    Cao S Q et al 2018 Phys. Plasmas 25 023304
    [27]
    Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic)
    [28]
    Kolb A C et al 1964 Phys. Fluids 7 519
    [29]
    Peacock N J and Pease R S 1969 J. Phys. D: Appl. Phys.2 1705
    [30]
    Zelʹdovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic)
    [31]
    Atomic Data and Analysis Structure (ADAS) (http://open.adas.ac.uk/)
  • Related Articles

    [1]He GUO (郭贺), Xiaomei YAO (姚晓妹), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦). Exploration of a MgO cathode for improving the intensity of pulsed discharge plasma at atmosphere[J]. Plasma Science and Technology, 2018, 20(10): 105404. DOI: 10.1088/2058-6272/aace9e
    [2]Mingming SUN (孙明明), Tianping ZHANG (张天平), Xiaodong WEN (温晓东), Weilong GUO (郭伟龙), Jiayao SONG (宋嘉尧). Plasma characteristics in the discharge region of a 20A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 25503-025503. DOI: 10.1088/2058-6272/aa8edb
    [3]N A ASHURBEKOV, K O IMINOV, O A POPOV, G S SHAKHSINOV. Current self-limitation in a transverse nanosecond discharge with a slotted cathode[J]. Plasma Science and Technology, 2017, 19(3): 35401-035401. DOI: 10.1088/2058-6272/19/3/035401
    [4]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [5]OU Wei (欧巍), DENG Baiquan (邓柏权), ZENG Xianjun (曾宪俊), GOU Fujun (芶富均), XUE Xiaoyan (薛晓艳), ZHANG Weiwei (张卫卫), CAO Xiaogang (曹小岗), YANG Dangxiao (杨党校), CAO Zhi (曹智). Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma[J]. Plasma Science and Technology, 2016, 18(6): 627-633. DOI: 10.1088/1009-0630/18/6/08
    [6]S. CORNISH, J. KHACHAN. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun[J]. Plasma Science and Technology, 2016, 18(2): 138-142. DOI: 10.1088/1009-0630/18/2/07
    [7]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [8]LI Shichao(李世超), HE Feng(何锋), GUO Qi(郭琦), OUYANG Jiting(欧阳吉庭). Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge[J]. Plasma Science and Technology, 2014, 16(1): 63-67. DOI: 10.1088/1009-0630/16/1/14
    [9]ZHAO Xiaoling(赵小令), CHEN Shixiu(陈仕修), CHEN Kun(陈堃), CHEN Bokai(陈柏恺). Best Magnetic Condition to Generate Hollow Cathode Glow Plasma in High Vacuum[J]. Plasma Science and Technology, 2014, 16(1): 21-25. DOI: 10.1088/1009-0630/16/1/05
    [10]D. FUKUHARA, S. NAMBA, K. KOZUE, T. YAMASAKI, K. TAKIYAMA. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132. DOI: 10.1088/1009-0630/15/2/10

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return