Citation: | Tao WU (吴涛), Jun HE (何俊), Li YANG (杨李), Peixiang LU (陆培祥). A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas[J]. Plasma Science and Technology, 2020, 22(10): 105503. DOI: 10.1088/2058-6272/aba1da |
[1] |
Mantouvalou I et al 2015 Rev. Sci. Instrum. 86 035116
|
[2] |
Ma T et al 2008 Rev. Sci. Instrum. 79 10E312
|
[3] |
Vinokhodov A Y et al 2016 J. Appl. Phys. 120 163304
|
[4] |
Ayele M G et al 2017 Nucl. Instrum. Methods Phys. Res. Sect.B Beam Interact. Mater. Atoms 411 35
|
[5] |
Narayanan T 2009 Curr. Opin. Colloid Interface Sci. 14 409
|
[6] |
Reagan B A et al 2014 Phys. Rev. A 89 053820
|
[7] |
O’Sullivan G et al 2015 J. Phys. B. Atomic Mol. Opt. Phys. 48 144025
|
[8] |
Shao G D et al 2019 Appl. Phys. B Lasers Opt. 125 5
|
[9] |
Wachulak P W et al 2010 Nucl. Instrum. Methods Phys. Res.Sect. B Beam Interact. Mater. Atoms 268 1692
|
[10] |
Adam J F, Moy J P and Susini J 2005 Rev. Sci. Instrum. 76 091301
|
[11] |
Li B W et al 2011 Proc. of SPIE 8139 81390P
|
[12] |
Pertot Y et al 2017 Science 355 264
|
[13] |
Amano S 2018 Jpn. J. Appl. Phys. 57 126201
|
[14] |
Wu T et al 2017 Opt. Commun. 385 143
|
[15] |
Wu T et al 2015 J. Phys. B Atomic Mol. Opt. Phys. 48 165005
|
[16] |
Wachulak P W 2016 Opto-Electron. Rev. 24 144
|
[17] |
Kim D et al 2006 Appl. Phys. Lett. 88 142904
|
[18] |
Zakharov V S 2017 J. Phys. D Appl. Phys. 50 035202
|
[19] |
Zhukov A V et al 2018 Appl. Phys. B 124 10
|
[20] |
Li B W et al 2012 J. Phys. B Atomic Mol. Opt. Phys. 45 245004
|
[21] |
Wu M X et al 2016 J. Phys. B Atomic Mol. Opt. Phys. 49 062003
|
[22] |
Wu T et al 2018 Spectrosc. Spectral Anal. 38 692 (in Chinese)
|
[23] |
Tamura T et al 2018 Opt. Lett. 43 2042
|
[24] |
Lokasani R et al 2019 Opt. Express 27 33351
|
[25] |
Vrba P et al 2017 Phys. Plasmas 24 123301
|
[26] |
John C et al 2019 Opt. Lett. 44 1439
|
[27] |
Higashiguchi T et al 2012 Appl. Phys. Lett. 100 014103
|
[28] |
Wu T et al 2016 J. Phys. B Atomic Mol. Opt. Phys. 49 035001
|
[29] |
Wu T et al 2015 J. Phys. B Atomic Mol. Opt. Phys. 48 245007
|
[30] |
Collins P D B 1982 Phys. Bull. 33 243
|
[31] |
Kumagai H et al 2010 J. Phys. Condens. Matter 22 474008
|
[32] |
Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
|
[33] |
Badnell N R et al 2011 J. Phys. B Atomic Mol. Opt. Phys. 44 135201
|
[34] |
Li B W et al 2012 Phys. Rev. A 85 052706
|
[35] |
Djaoui A 1996 A user guide for the laser plasma simulation code: MED103 Report Number: RAL-TR-96-099
|
[1] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[2] | Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf |
[3] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[4] | ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09 |
[5] | TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16 |
[6] | JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12 |
[7] | FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16 |
[8] | F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05 |
[9] | DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11 |
[10] | QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565. |
1. | Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899 |
2. | Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf |
3. | Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353 |
4. | Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397 |
5. | Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583 |
6. | Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235 |
7. | Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346 |
8. | Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822 |
9. | Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703 |
10. | Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609 |
11. | Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856 |
12. | Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070 |