Advanced Search+
Tao WU (吴涛), Jun HE (何俊), Li YANG (杨李), Peixiang LU (陆培祥). A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas[J]. Plasma Science and Technology, 2020, 22(10): 105503. DOI: 10.1088/2058-6272/aba1da
Citation: Tao WU (吴涛), Jun HE (何俊), Li YANG (杨李), Peixiang LU (陆培祥). A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas[J]. Plasma Science and Technology, 2020, 22(10): 105503. DOI: 10.1088/2058-6272/aba1da

A study on soft x-ray spectra from pulsed 1 μm Nd:YAG laser-induced ytterbium plasmas

Funds: he authors wish to acknowledge support from Guangdong Major Project of Basic and Applied Basic Research (No. 2019B030302003) and Hubei Key Laboratory of Optical Information and Pattern Recognition open fund (No. 201908).
More Information
  • Received Date: April 30, 2020
  • Revised Date: June 29, 2020
  • Accepted Date: June 30, 2020
  • The Nd:YAG laser with a wavelength of 1.064 μm was used to generate plasmas on a high-purity solid ytterbium (70Yb) target in a vacuum chamber. The soft x-ray time- and space-integration spectra from the Yb plasmas were measured in the wavelength range of 1.0–8.5 nm under different power densities. The atomic spectral data of the unresolved transition arrays from highly charged Yb ions were calculated based on Cowan's suite of codes, including configuration interaction. The calculated Gaussian envelope of the emission determined by the weighted spontaneous transition rates was compared with the experimental spectra, and a good agreement between them was obtained. The spatial-temporal evolutions of the plasmas under the experimental conditions are simulated based on the collisional-radiative model, enabling the understanding of the mechanism of the plasma conditions for optimal water window waveband emission output.
  • [1]
    Mantouvalou I et al 2015 Rev. Sci. Instrum. 86 035116
    [2]
    Ma T et al 2008 Rev. Sci. Instrum. 79 10E312
    [3]
    Vinokhodov A Y et al 2016 J. Appl. Phys. 120 163304
    [4]
    Ayele M G et al 2017 Nucl. Instrum. Methods Phys. Res. Sect.B Beam Interact. Mater. Atoms 411 35
    [5]
    Narayanan T 2009 Curr. Opin. Colloid Interface Sci. 14 409
    [6]
    Reagan B A et al 2014 Phys. Rev. A 89 053820
    [7]
    O’Sullivan G et al 2015 J. Phys. B. Atomic Mol. Opt. Phys. 48 144025
    [8]
    Shao G D et al 2019 Appl. Phys. B Lasers Opt. 125 5
    [9]
    Wachulak P W et al 2010 Nucl. Instrum. Methods Phys. Res.Sect. B Beam Interact. Mater. Atoms 268 1692
    [10]
    Adam J F, Moy J P and Susini J 2005 Rev. Sci. Instrum. 76 091301
    [11]
    Li B W et al 2011 Proc. of SPIE 8139 81390P
    [12]
    Pertot Y et al 2017 Science 355 264
    [13]
    Amano S 2018 Jpn. J. Appl. Phys. 57 126201
    [14]
    Wu T et al 2017 Opt. Commun. 385 143
    [15]
    Wu T et al 2015 J. Phys. B Atomic Mol. Opt. Phys. 48 165005
    [16]
    Wachulak P W 2016 Opto-Electron. Rev. 24 144
    [17]
    Kim D et al 2006 Appl. Phys. Lett. 88 142904
    [18]
    Zakharov V S 2017 J. Phys. D Appl. Phys. 50 035202
    [19]
    Zhukov A V et al 2018 Appl. Phys. B 124 10
    [20]
    Li B W et al 2012 J. Phys. B Atomic Mol. Opt. Phys. 45 245004
    [21]
    Wu M X et al 2016 J. Phys. B Atomic Mol. Opt. Phys. 49 062003
    [22]
    Wu T et al 2018 Spectrosc. Spectral Anal. 38 692 (in Chinese)
    [23]
    Tamura T et al 2018 Opt. Lett. 43 2042
    [24]
    Lokasani R et al 2019 Opt. Express 27 33351
    [25]
    Vrba P et al 2017 Phys. Plasmas 24 123301
    [26]
    John C et al 2019 Opt. Lett. 44 1439
    [27]
    Higashiguchi T et al 2012 Appl. Phys. Lett. 100 014103
    [28]
    Wu T et al 2016 J. Phys. B Atomic Mol. Opt. Phys. 49 035001
    [29]
    Wu T et al 2015 J. Phys. B Atomic Mol. Opt. Phys. 48 245007
    [30]
    Collins P D B 1982 Phys. Bull. 33 243
    [31]
    Kumagai H et al 2010 J. Phys. Condens. Matter 22 474008
    [32]
    Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
    [33]
    Badnell N R et al 2011 J. Phys. B Atomic Mol. Opt. Phys. 44 135201
    [34]
    Li B W et al 2012 Phys. Rev. A 85 052706
    [35]
    Djaoui A 1996 A user guide for the laser plasma simulation code: MED103 Report Number: RAL-TR-96-099
  • Related Articles

    [1]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [2]Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
    [3]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [4]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [5]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [6]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(12)

    1. Li, L., Zhang, L., Dong, Y. Seed priming with cold plasma mitigated the negative influence of drought stress on growth and yield of rapeseed (Brassica napus L.). Industrial Crops and Products, 2025. DOI:10.1016/j.indcrop.2025.120899
    2. Kamseu-Mogo, J.-P., Soulier, M., Kamgang-Youbi, G. et al. Advancements in maize cultivation: synergistic effects of dry atmospheric plasma combined with plasma-activated water. Journal of Physics D: Applied Physics, 2025, 58(5): 055201. DOI:10.1088/1361-6463/ad8acf
    3. Bai, R., Lan, C., Liu, D. et al. Revolutionizing Sustainable Agriculture: The Role of Atmospheric Pressure Plasma in Enhancing Plant Growth and Resilience. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3543353
    4. Porcher, A., Duffour, E., Perisse, F. et al. Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma. Journal of Plant Physiology, 2025. DOI:10.1016/j.jplph.2024.154397
    5. Beak, H.K., Priatama, R.A., Han, S.-I. et al. Biomass enhancement and activation of transcriptional regulation in sorghum seedling by plasma-activated water. Frontiers in Plant Science, 2024. DOI:10.3389/fpls.2024.1488583
    6. Marček, T., Hamow, K.Á., Janda, T. et al. Effects of High Voltage Electrical Discharge (HVED) on Endogenous Hormone and Polyphenol Profile in Wheat. Plants, 2023, 12(6): 1235. DOI:10.3390/plants12061235
    7. Tan, Y., Duan, Y., Chi, Q. et al. The Role of Reactive Oxygen Species in Plant Response to Radiation. International Journal of Molecular Sciences, 2023, 24(4): 3346. DOI:10.3390/ijms24043346
    8. Waskow, A., Guihur, A., Howling, A. et al. Catabolism of Glucosinolates into Nitriles Revealed by RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment. Life, 2022, 12(11): 1822. DOI:10.3390/life12111822
    9. Cui, D., Yin, Y., Sun, H. et al. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. DOI:10.1016/j.ecoenv.2022.113703
    10. Priatama, R.A., Pervitasari, A.N., Park, S. et al. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. International Journal of Molecular Sciences, 2022, 23(9): 4609. DOI:10.3390/ijms23094609
    11. Mildaziene, V., Ivankov, A., Sera, B. et al. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants, 2022, 11(7): 856. DOI:10.3390/plants11070856
    12. Waskow, A., Guihur, A., Howling, A. et al. RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23(6): 3070. DOI:10.3390/ijms23063070

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (132) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return