Advanced Search+
Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620
Citation: Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620

NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant

Funds: This work was supported by the National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2019A13), the National Key Research and Development Project of China (No. 2019YFC1805505), the Shanxi Province Bidding Project (No. 20191101007), the Major Science and Technology Projects of Shanxi Province (No. 20181102017), and State Key Laboratory of Organic Geochemistry (No. SKLOG -201909).
More Information
  • Received Date: October 11, 2020
  • Revised Date: December 20, 2020
  • Accepted Date: December 21, 2020
  • NOx storage and reduction (NSR) technology has been regarded as one of the most promising strategies for the removal of nitric oxides (NOx) from lean-burn engines, and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades. This work reports the NSR of nitric oxide (NO) by combining non-thermal plasma (NTP) and Co/Pt/Ba/γ-Al2O3 (Co/PBA) catalyst using methane as a reductant. The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150 °C–350 °C, and NOx conversion of the 8% Co/PBA catalyst reaches 96.8% at 350 °C. Oxygen (O2) has a significant effect on the removal of NOx, and the NOx conversion increases firstly and then decreases when the O2 concentration ranges from 2% to 10%. Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts. There is a negative correlation between sulfur dioxide (SO2) and NOx conversion in the NTP system, and the 8% Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts, which shows that Co has a certain SO2 resistance.
  • [1]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [2]
    Samojeden B and Grzybek T 2016 Energy 116 1484
    [3]
    Zhu T et al 2020 Catalysts 10 135
    [4]
    Daood S S, Yelland T S and Nimmo W 2017 Fuel 208 353
    [5]
    Han L P et al 2019 Environ. Sci. Technol. 53 6462
    [6]
    Peters F et al 2016 Plasma Sci. Technol. 18 406
    [7]
    Yang R Y et al 2017 Chem. Eng. J. 326 656
    [8]
    Flura A et al 2012 Appl. Catal. B Environ. 126 275
    [9]
    Mei X Y et al 2017 Sci. Rep-UK 7 42862
    [10]
    Zhang C et al 2020 Dalton T. 49 3970
    [11]
    Durairaj R, Subramanyan N and Duraiswamy D 2019 J. Ceram. Process. Res. 20 621
    [12]
    Liu Z M and Woo S I 2006 Catal. Rev. 48 43
    [13]
    Mei X Y et al 2015 RSC Adv. 5 78061
    [14]
    Zhang C et al 2020 Catal. Today 339 148
    [15]
    Liu Y H C et al 2018 Plasma Sci. Technol. 20 014002
    [16]
    Pan H and Qiang Y 2014 Plasma Chem. Plasma Process.34 811
    [17]
    Zhu T et al 2018 Plasma Sci. Technol. 20 054007
    [18]
    Haddouche A and Lemerini M 2015 Plasma Sci. Technol.17 589
    [19]
    Wei T S et al 2018 Environ. Sci. Pollut. Res. 25 35582
    [20]
    Zhu T et al 2020 Plasma Sci. Technol. 22 034011
    [21]
    Haddouche A et al 2015 Plasma Sci. Technol. 17 589
    [22]
    Gholami R et al 2018 Philos. T. R. Soc. A 376 20170054
    [23]
    Jablonowski H et al 2015 Phys. Plasmas 22 122008
    [24]
    Liu D P, Liu Y H and Chen B X 2006 Plasma Sci. Technol. 8 701
    [25]
    Chen S et al 2018 Environ. Sci. Technol. 52 8568
    [26]
    Wang H et al 2013 Chem. Commun. 49 9353
    [27]
    Zhang Z S et al 2015 Catal. Today 258 175
    [28]
    Kim J G et al 2008 J. Ind. Eng. Chem. 14 841
    [29]
    Li L et al 2013 Chinese J. Catal. 34 1087
    [30]
    Bai Z F et al 2019 Appl. Catal. B Environ. 249 333
    [31]
    Bai Z F et al 2017 Catal. Commun. 102 81
    [32]
    Wang X Y et al 2010 Appl. Catal. B Environ. 100 19
    [33]
    Zhang Z S et al 2015 Catal. Today 258 386
    [34]
    Zhang Z S et al 2015 Appl. Catal. B Environ. 165 232
    [35]
    Bai Z F et al 2017 Chem. Eng. J. 314 688
    [36]
    Guo L et al 2013 J. Hazard. Mater. 260 543
    [37]
    Thomas C R et al 2019 Appl. Catal. B Environ. 244 284
    [38]
    Wang H et al 2013 Catal. Today 211 66
    [39]
    Peng H H et al 2016 Environ. Sci. Pollut. R 23 19590
    [40]
    Wang X Y et al 2013 Sci. Rep.-UK 3 1559
    [41]
    Onrubia-Calvo J A et al 2020 Catalysts 10 208
    [42]
    Wen W et al 2016 RSC Adv. 6 74046
  • Related Articles

    [1]Tao ZHU (竹涛), Xing ZHANG (张星), Mingfeng MA (马名烽), Lifeng WANG (王礼锋), Zeyu XUE (薛泽宇), Yiming HOU (侯益铭), Zefu YE (叶泽甫), Tongshen LIU (刘桐珅). 1,2,4-trichlorobenzene decomposition using non-thermal plasma technology[J]. Plasma Science and Technology, 2020, 22(3): 34011-034011. DOI: 10.1088/2058-6272/ab618b
    [2]Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0
    [3]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [4]Yanqin LIU (刘彦琴), Guangning WU (吴广宁), Guoqiang GAO (高国强), Jianyi XUE (薛建议), Yongqiang KANG (康永强), Chaoqun SHI (石超群). Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages[J]. Plasma Science and Technology, 2019, 21(5): 55501-055501. DOI: 10.1088/2058-6272/aafdf7
    [5]Haiying WEI (魏海英), Hongge GUO (郭红革), Lijun SANG (桑利军), Xingcun LI (李兴存), Qiang CHEN (陈强). Study on deposition of Al2O3 films by plasma-assisted atomic layer with different plasma sources[J]. Plasma Science and Technology, 2018, 20(6): 65508-065508. DOI: 10.1088/2058-6272/aaacc7
    [6]LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
    [7]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [8]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [9]QI Bin (亓斌), WANG Shouyu (王守宇), ZHAO Xingyan (赵兴言), ZHU Xiaoying (祝笑颖), SUN Dapeng (孙大鹏), LIU Chen (刘晨), XU Changjiang (徐长江). The Influence of Triaxiality Parameter Υ on the Chiral Doublet Bands with (?g9/2)-1 (?h11/2)2 Configuration[J]. Plasma Science and Technology, 2012, 14(7): 595-597. DOI: 10.1088/1009-0630/14/7/06
    [10]LEI Wenwen(雷雯雯), LI Xingcun(李兴存), CHEN Qiang (陈强), WANG Zhengduo(王正铎). Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133. DOI: 10.1088/1009-0630/14/2/09
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (125) PDF downloads (108) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return