Citation: | Jianyuan XIAO (肖建元), Hong QIN (秦宏). Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics[J]. Plasma Science and Technology, 2021, 23(5): 55102-055102. DOI: 10.1088/2058-6272/abf125 |
[1] |
Dawson J M 1983 Rev. Mod. Phys. 55 403
|
[2] |
Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: Taylor and Francis)
|
[3] |
Birdsall C K and Langdon A B 1991 Plasma Physics via Computer Simulation (Bristol: IOP Publishing)
|
[4] |
Yee K S et al 1966 IEEE Trans. Antennas Propag. 14 302
|
[5] |
Boris J 1970 Proc. 4th Conf. on Numerical Simulation of Plasmas (Naval Research Laboratory, Washington D. C.)p 3
|
[6] |
Stern A et al 2015 Geometric computational electrodynamics with variational integrators and discrete differential forms Geometry, Mechanics, and Dynamics ed D E Chang et al (New York: Springer) p 437
|
[7] |
Qin H et al 2013 Phys. Plasmas 20 084503
|
[8] |
He Y et al 2015 J. Comput. Phys. 281 135
|
[9] |
Zhang R et al 2015 Phys. Plasmas 22 044501
|
[10] |
Ellison C L, Burby J W and Qin H 2015 J. Comput. Phys.301 489
|
[11] |
He Y et al 2016 J. Comput. Phys. 305 172
|
[12] |
Tu X et al 2016 Phys. Plasmas 23 122514
|
[13] |
Ueda H et al 1994 Comput. Phys. Commun. 79 249
|
[14] |
Fu H et al 2016 Sci. China Inf. Sci. 59 072001
|
[15] |
Squire J, Qin H and Tang W M 2012 Phys. Plasmas 19 084501
|
[16] |
Xiao J et al 2013 Phys. Plasmas 20 102517
|
[17] |
Xiao J et al 2015 Phys. Plasmas 22 112504
|
[18] |
Xiao J et al 2015 Phys. Plasmas 22 092305
|
[19] |
He Y et al 2015 Phys. Plasmas 22 124503
|
[20] |
Qin H et al 2016 Nucl. Fusion 56 014001
|
[21] |
He Y et al 2016 Phys. Plasmas 23 092108
|
[22] |
Kraus M et al 2017 J. Plasma Phys. 83 905830401
|
[23] |
Xiao J et al 2017 Phys. Plasmas 24 062112
|
[24] |
Xiao J, Qin H and Liu J 2018 Plasma Sci. Technol. 20 110501
|
[25] |
Xiao J and Qin H 2019 Nucl. Fusion 59 106044
|
[26] |
Morrison P J 2017 Phys. Plasmas 24 055502
|
[27] |
Holderied F et al 2020 J. Comput. Phys. 402 109108
|
[28] |
Xiao J and Qin H Structure-preserving geometric particle-incell algorithm suppresses finite-grid instability—Comment on “Finite grid instability and spectral fidelity of the electrostatic particle-in-cell algorithm” by Huang et al arXiv:1904.00535v1
|
[29] |
Li Y et al 2019 J. Comput. Phys. 396 381
|
[30] |
Li Y, Sun Y and Crouseilles N 2020 J. Comput. Phys. 405 109172
|
[31] |
Hirvijoki E, Kormann K and Zonta F 2020 Phys. Plasmas 27 092506
|
[32] |
Perse B, Kormann K and Sonnendrücker E 2021 SIAM J. Sci.Comput. 43 B194
|
[33] |
Zheng J et al 2020 Plasma Phys. Control. Fusion 62 125020
|
[34] |
Wang Z et al Geometric electrostatic particle-in-cell algorithm on unstructured meshes arXiv:2012.08587
|
[35] |
Kormann K and Sonnendrücker E 2021 J. Comput. Phys. 425 109890
|
[36] |
Lin Z et al 1998 Science 281 1835
|
[37] |
Zebin L et al 2013 Plasma Sci. Technol. 15 499
|
[38] |
Ku S et al 2006 J. Phys.: Conf. Ser. 46 87
|
[39] |
Chang C et al 2009 Phys. Plasmas 16 056108
|
[40] |
Chen Y and Parker S E 2003 J. Comput. Phys. 189 463
|
[41] |
Chen Y and Parker S E 2007 J. Comput. Phys. 220 839
|
[42] |
Wang E et al 2012 Nucl. Fusion 52 103015
|
[43] |
Lee T D 1983 Phys. Lett. B 122 217
|
[44] |
Lee T D 1987 J. Stat. Phys. 46 843
|
[45] |
Veselov A P 1988 Funktsional. Anal. i Prilozhen. 22 83
|
[46] |
Marsden J E and West M 2001 Acta Numer. 10 357
|
[47] |
Han-Ying G et al 2002 Commun. Theor. Phys. 37 257
|
[48] |
Qin H 2020 Sci. Rep. 10 19329
|
[49] |
Hutchinson I H et al 1994 Phys. Plasmas 1 1511
|
[50] |
Greenwald M et al 1997 Nucl. Fusion 37 793
|
[51] |
Ince-Cushman A et al 2009 Phys. Rev. Lett. 102 035002
|
[52] |
Rice J E et al 2009 Nucl. Fusion 49 025004
|
[53] |
Guan X et al 2013 Phys. Plasmas 20 102105
|
[54] |
Guan X et al 2013 Phys. Plasmas 20 022502
|
[55] |
Qin H 1998 Gyrokinetic theory and computational methods for electromagnetic perturbationsin tokamaks PhD Thesis Princeton University, Princeton, NJ p 08540
|
[56] |
Qin H, Tang W M and Rewoldt G 1999 Phys. Plasmas 6 2544
|
[57] |
Dong G et al 2019 Phys. Plasmas 26 010701
|
[58] |
Xiao J et al 2016 Phys. Plasmas 23 112107
|
[59] |
Zhou Y et al 2014 Phys. Plasmas 21 102109
|
[60] |
Zhou Y et al 2016 Phys. Rev. E 93 023205
|
[61] |
Zhou Y 2017 Variational integration for ideal magnetohydrodynamics and formation of current singularities PhD Thesis Princeton University, Princeton, NJ
|
[62] |
Zhou Y et al 2017 Astrophys. J. 852 3
|
[63] |
Burby J W and Tronci C 2017 Plasma Phys. Control. Fusion 59 045013
|
[64] |
Chen Q et al 2017 J. Comput. Phys. 349 441
|
[65] |
Shi Y, Fisch N J and Qin H 2016 Phys. Rev. A 94 012124
|
[66] |
Shi Y et al 2018 Phys. Rev. E 97 053206
|
[67] |
Shi Y 2018 Plasma physics in strong field regimes PhD Thesis Princeton University, Princeton, NJ
|
[68] |
Shi Y, Qin H and Fisch N J Plasma physics in strong-field regimes: theories and simulations arXiv:2012.15363
|
[69] |
Chen Q, Xiao J and Fan P J 2021 J. High Energy Phys.2021 127
|
[70] |
Hirvijoki E, Kraus M and Burby J W Metriplectic particle-incell integrators for the Landau collision operator arXiv:1802.05263
|
[71] |
Hirani A N 2003 Discrete exterior calculus PhD Thesis California Institute of Technology
|
[72] |
Desbrun M et al Discrete exterior calculus arXix:math/0508341
|
[73] |
Whitney H 1957 Geometric Integration Theory (Princeton:Princeton University Press)
|
[74] |
Morrison P J 1980 Phys. Lett. A 80 383
|
[75] |
Marsden J E and Weinstein A 1982 Physica D 4 394
|
[76] |
Weinstein A and Morrison P J 1981 Phys. Lett. A 86 235
|
[77] |
Burby J W 2017 Phys. Plasmas 24 032101
|
[78] |
Iwinski Z R and Turski L A 1976 Lett. Appl. Eng. Sci. 4 179
|
[79] |
de Vogelaere R 1956 Methods of integration which preserve the contact transformation property of the Hamilton Equations Technical Report University of Notre Dame
|
[80] |
Ruth R D 1983 IEEE Trans. Nucl. Sci. 30 2669
|
[81] |
Feng K 1985 On difference schemes and sympletic geometry Proc. 1984 Beijing Symp. on Differential Geometry and Differential Equations p 42
|
[82] |
Feng K 1986 J. Comput. Math. 4 279
|
[83] |
Sanz-Serna J M 1988 BIT Numer. Math. 28 877
|
[84] |
Yoshida H 1990 Phys. Lett. A 150 262
|
[85] |
Forest E and Ruth R D 1990 Physica D 43 105
|
[86] |
Channell P J and Scovel C 1990 Nonlinearity 3 231
|
[87] |
Candy J and Rozmus W 1991 J. Comput. Phys. 92 230
|
[88] |
Tang Y 1993 Comput. Math. Appl. 25 83
|
[89] |
Sanz-Serna J M and Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman and Hall)
|
[90] |
Shang Z 1994 J. Comput. Math. 2 265
|
[91] |
Kang F and Zai-jiu S 1995 Numer. Math. 71 451
|
[92] |
Shang Z 1999 Numer. Math. 83 477
|
[93] |
Hairer E, Lubich C and Wanner G 2002 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (New York: Springer)
|
[94] |
Hong J and Qin M Z 2002 Appl. Math. Lett. 15 1005
|
[95] |
Shang Z 2006 J. Phys. A: Math. Gen. 39 5601
|
[96] |
Feng K and Qin M 2010 Symplectic Geometric Algorithms for Hamiltonian Systems (New York: Springer)
|
[97] |
Zhang R et al 2016 Phys. Rev. E 94 013205
|
[98] |
Tao M L 2016 J. Comput. Phys. 327 245
|
[99] |
Qin H and Guan X 2008 Phys. Rev. Lett. 100 035006
|
[100] |
Qin H, Guan X and Tang W M 2009 Phys. Plasmas 16 042510
|
[101] |
Squire J, Qin H and Tang W M 2012 Phys. Plasmas 19 052501
|
[102] |
Zhang R et al 2014 Phys. Plasmas 21 032504
|
[103] |
Ellison C L et al 2015 Plasma Phys. Control. Fusion 57 054007
|
[104] |
Burby J W and Ellison C L 2017 Phys. Plasmas 24 110703
|
[105] |
Kraus M Projected variational integrators for degenerate Lagrangian systems arXiv:1708.07356v1
|
[106] |
Ellison C L et al 2018 Phys. Plasmas 25 052502
|
[107] |
Ellison C L 2016 Development of multistep and degenerate variational integrators for applications in plasma physics PhD Thesis Princeton University, Princeton, NJ
|
[108] |
He Y et al 2017 Phys. Lett. A 381 568
|
[109] |
Zhou Z et al 2017 Phys. Plasmas 24 052507
|
[110] |
Xiao J and Qin H 2019 Comput. Phys. Commun. 241 19
|
[111] |
Shi Y et al 2019 Numer. Algorithms 81 1295
|
[112] |
Xiao J and Qin H Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for guiding center dynamics arXiv:2006.03818v1
|
[113] |
Crouseilles N, Einkemmer L and Faou E 2015 J. Comput.Phys. 283 224
|
[114] |
Qin H et al 2015 J. Comput. Phys. 297 721
|
[115] |
Glasser A S and Qin H 2020 J. Plasma Phys. 86 835860303
|
[116] |
Glasser A S and Qin H Restoring Poincaré symmetry to the lattice arXiv:1902.04396v1
|
[117] |
Glasser A S and Qin H Lifting spacetimeʼs Poincaré symmetries arXiv:1902.04395v1
|
[118] |
Xiao J et al 2019 Phys. Lett. A 383 808
|
[119] |
Tang W M, Connor J W and Hastie R J 1980 Nucl. Fusion 20 1439
|
[120] |
Lauber P et al 2007 J. Comput. Phys. 226 447
|
[121] |
Hahm T S 1988 Phys. Fluids 31 2670
|
[122] |
Brizard A 1989 J. Plasma Phys. 41 541
|
[123] |
Qin H, Tang W M and Rewoldt G 1998 Phys. Plasmas 5 1035
|
[124] |
Qin H et al 1999 Phys. Plasmas 6 1575
|
[125] |
Qin H, Tang W M and Lee W W 2000 Phys. Plasmas 7 4433
|
[126] |
Sugama H 2000 Phys. Plasmas 7 466
|
[127] |
Qin H and Tang W M 2004 Phys. Plasmas 11 1052
|
[128] |
Qin H 2005 A Short Introduction to General Gyrokinetic Theory (Princeton, NJ: Princeton Plasma Physics Lab.)
|
[129] |
Qin H et al 2007 Phys. Plasmas 14 056110
|
[130] |
Burby J W et al 2015 Phys. Lett. A 379 2073
|
[131] |
Burby J W 2015 Chasing hamiltonian structure in gyrokinetic theory PhD Thesis Princeton University, Princeton, NJ
|
[132] |
Burby J W and Brizard A J 2019 Phys. Lett. A 383 2172
|
[133] |
Wan W et al 2012 Phys. Rev. Lett. 109 185004
|
[134] |
Wan W et al 2013 Phys. Plasmas 20 055902
|
[135] |
Pueschel M J, Kammerer M and Jenko F 2008 Phys. Plasmas 15 102310
|
[136] |
Okuda H 1972 J. Comput. Phys. 10 475
|
[137] |
Cohen B I, Langdon A B and Friedman A 1982 J. Comput.Phys. 46 15
|
[138] |
Langdon A B, Cohen B I and Friedman A 1983 J. Comput.Phys. 51 107
|
[139] |
Cohen B I et al 1989 J. Comput. Phys. 81 151
|
[140] |
Liewer P C and Decyk V K 1989 J. Comput. Phys. 85 302
|
[141] |
Friedman A et al 1991 J. Comput. Phys. 96 54
|
[142] |
Eastwood J W 1991 Comput. Phys. Commun. 64 252
|
[143] |
Cary J R and Doxas I 1993 J. Comput. Phys. 107 98
|
[144] |
Villasenor J and Buneman O 1992 Comput. Phys. Commun.69 306
|
[145] |
Qin H, Davidson R C and Lee W W 2000 Phys. Rev. Spec.Top. Accel. Beams 3 084401
|
[146] |
Qin H, Davidson R C and Lee W W 2000 Phys. Lett. A 272 389
|
[147] |
Qin H et al 2001 Nucl. Instrum. Methods Phys. Res. A 464 477
|
[148] |
Davidson R C and Qin H 2001 Physics of Intense Charged Particle Beams in High Energy Accelerators (London:Imperial College Press)
|
[149] |
Esirkepov T Z 2001 Comput. Phys. Commun. 135 144
|
[150] |
Vay J-L et al 2002 Laser Part. Beams 20 569
|
[151] |
Nieter C and Cary J R 2004 J. Comput. Phys. 196 448
|
[152] |
Huang C et al 2006 J. Comput. Phys. 217 658
|
[153] |
Crouseilles N, Mehrenberger M and Sonnendrucker E 2007 J. Comput. Phys. 229 1927
|
[154] |
Chen G, Chacón L and Barnes D C 2011 J. Comput. Phys.230 7018
|
[155] |
Chacón L, Chen G and Barnes D C 2013 J. Comput. Phys.233 1
|
[156] |
Evstatiev E G and Shadwick B A 2013 J. Comput. Phys.245 376
|
[157] |
Shadwick B A, Stamm A B and Evstatiev E G 2014 Phys.Plasmas 21 055708
|
[158] |
Moon H, Teixeira F L and Omelchenko Y A 2015 Comput.Phys. Commun. 194 43
|
[159] |
Huang C-K et al 2016 Comput. Phys. Commun. 207 123
|
[160] |
Webb S D 2016 Plasma Phys. Control. Fusion 58 034007
|
[161] |
Zeiler A, Drake J F and Rogers B 1997 Phys. Plasmas 4 2134
|
[162] |
Xu X Q et al 2010 Phys. Rev. Lett. 105 175005
|
[163] |
Ricci P et al 2012 Plasma Phys. Control. Fusion 54 124047
|
[164] |
Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
|
[1] | Dehui Li, Yong Chia Thio, Li Jia. Development and benchmark simulations of a hybrid fluid particle-in-cell code SHYPIC[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcdab |
[2] | Yuqiang ZHANG, Xingang YU, Zongbiao YE. Particle-in-cell simulations of EUV-induced hydrogen plasma in the vicinity of a reflective mirror[J]. Plasma Science and Technology, 2024, 26(8): 085503. DOI: 10.1088/2058-6272/ad48d0 |
[3] | A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f |
[4] | Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2 |
[5] | Jianyuan XIAO (肖建元), Hong QIN (秦宏), Jian LIU (刘健). Structure-preserving geometric particle-in- cell methods for Vlasov-Maxwell systems[J]. Plasma Science and Technology, 2018, 20(11): 110501. DOI: 10.1088/2058-6272/aac3d1 |
[6] | Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c |
[7] | ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04 |
[8] | GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02 |
[9] | WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04 |
[10] | LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17 |
1. | Qin, H., Kolmes, E.J., Updike, M. et al. Gromov ground state in phase space engineering for fusion energy. Physical Review E, 2025, 111(2): 025205. DOI:10.1103/PhysRevE.111.025205 |
2. | Zheng, J., Wang, G., Li, B. A hybrid Eulerian-Lagrangian Vlasov method for nonlinear wave-particle interaction in weakly inhomogeneous magnetic field. Computer Physics Communications, 2025. DOI:10.1016/j.cpc.2024.109362 |
3. | Liu, Y., Liu, Z., Liu, J. et al. High-resolution simulations of nonlinear electromagnetic turbulence in tokamak devices. European Physical Journal: Special Topics, 2025. DOI:10.1140/epjs/s11734-025-01566-3 |
4. | Angus, J.R., Farmer, W., Friedman, A. et al. An implicit particle code with exact energy and charge conservation for studies of dense plasmas in axisymmetric geometries. Journal of Computational Physics, 2024. DOI:10.1016/j.jcp.2024.113427 |
5. | Zhang, R., Wang, Z., Xiao, J. et al. Structure-preserving algorithms for guiding center dynamics based on the slow manifold of classical Pauli particle. Plasma Science and Technology, 2024, 26(6): 065101. DOI:10.1088/2058-6272/ad225b |
6. | Qin, H.. Advanced fuel fusion, phase space engineering, and structure-preserving geometric algorithms. Physics of Plasmas, 2024, 31(5): 050601. DOI:10.1063/5.0203707 |
7. | Powis, A.T., Kaganovich, I.D. Accuracy of the explicit energy-conserving particle-in-cell method for under-resolved simulations of capacitively coupled plasma discharges. Physics of Plasmas, 2024, 31(2): 023901. DOI:10.1063/5.0174168 |
8. | Ren, J., Lapenta, G. Recent development of fully kinetic particle-in-cell method and its application to fusion plasma instability study. Frontiers in Physics, 2024. DOI:10.3389/fphy.2024.1340736 |
9. | Fan, P., Chen, Q., Xiao, J. et al. High-order field theory and a weak Euler-Lagrange-Barut equation for classical relativistic particle-field systems. Plasma Science and Technology, 2023, 25(11): 115001. DOI:10.1088/2058-6272/acdc07 |
10. | Ramachandran, O.H., Kempel, L.C., Verboncoeur, J.P. et al. A Necessarily Incomplete Review of Electromagnetic Finite Element Particle-in-Cell Methods. IEEE Transactions on Plasma Science, 2023, 51(7): 1718-1728. DOI:10.1109/TPS.2023.3257165 |
11. | Zonta, F., Pusztay, J.V., Hirvijoki, E. Multispecies structure-preserving particle discretization of the Landau collision operator. Physics of Plasmas, 2022, 29(12): 123906. DOI:10.1063/5.0105182 |
12. | Ye, E., Loureiro, N.F.G. Quantum-inspired method for solving the Vlasov-Poisson equations. Physical Review E, 2022, 106(3): 035208. DOI:10.1103/PhysRevE.106.035208 |
13. | Liu, Z.X., Liu, Y.J., Xiao, J.Y. et al. Experimental and theoretical study of weakly coherent mode in I-mode edge plasmas in the EAST tokamak. Nuclear Fusion, 2022, 62(8): 086029. DOI:10.1088/1741-4326/ac7537 |
14. | Chen, Y., Cheng, J., Parker, S.E. Evolution of the marker distribution in gyrokinetic δ f particle-in-cell simulations. Physics of Plasmas, 2022, 29(7): 073901. DOI:10.1063/5.0097207 |
15. | Hirvijoki, E., Burby, J.W., Brizard, A.J. Metriplectic foundations of gyrokinetic Vlasov-Maxwell-Landau theory. Physics of Plasmas, 2022, 29(6): 060701. DOI:10.1063/5.0091727 |
16. | Glasser, A.S., Qin, H. A gauge-compatible Hamiltonian splitting algorithm for particle-in-cell simulations using finite element exterior calculus. Journal of Plasma Physics, 2022, 88(2): 835880202. DOI:10.1017/S0022377822000290 |
17. | McLachlan, R.I.. Tuning Symplectic Integrators is Easy and Worthwhile. Communications in Computational Physics, 2022, 31(3): 987-996. DOI:10.4208/CICP.OA-2021-0154 |
18. | Zheng, J., Zhu, G., Chen, J. et al. Structure-preserving particle-in-cell simulation of lower hybrid wave propagation and heating in the magnetic mirror. Nuclear Fusion, 2021, 61(12): 126028. DOI:10.1088/1741-4326/ac2d57 |
19. | Xiao, J., Chen, J., Yang, C. et al. Symplectic Structure-Preserving Particle-in-Cell Whole-Volume Simulation of Tokamak Plasmas to 111.3 Trillion Particles and 25.7Billion Grids. International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2021. DOI:10.1145/3458817 |
20. | Crawford, Z.D., O'Connor, S., Luginsland, J. et al. Rubrics for Charge Conserving Current Mapping in Finite Element Electromagnetic Particle in Cell Methods. IEEE Transactions on Plasma Science, 2021, 49(11): 3719-3732. DOI:10.1109/TPS.2021.3122410 |
21. | O'Connor, S., Crawford, Z.D., Ramachandran, O.H. et al. Time integrator agnostic charge conserving finite element PIC. Physics of Plasmas, 2021, 28(9): 1ENG. DOI:10.1063/5.0046842 |
22. | Zonta, F., Iorio, R., Burby, J.W. et al. Dispersion relation for gauge-free electromagnetic drift kinetics. Physics of Plasmas, 2021, 28(9): 092504. DOI:10.1063/5.0058118 |
23. | Wang, Z., Qin, H., Sturdevant, B. et al. Geometric electrostatic particle-in-cell algorithm on unstructured meshes. Journal of Plasma Physics, 2021, 87(4): 905870406. DOI:10.1017/S0022377821000702 |