Advanced Search+
Jianyuan XIAO (肖建元), Hong QIN (秦宏). Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics[J]. Plasma Science and Technology, 2021, 23(5): 55102-055102. DOI: 10.1088/2058-6272/abf125
Citation: Jianyuan XIAO (肖建元), Hong QIN (秦宏). Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics[J]. Plasma Science and Technology, 2021, 23(5): 55102-055102. DOI: 10.1088/2058-6272/abf125

Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics

Funds: J Xiao was supported by the the National MCF Energy R&D Program (No. 2018YFE0304100), National Key Research and Development Program (Nos. 2016YFA0400600, 2016YFA0400601 and 2016YFA0400602), and National Natural Science Foundation of China (Nos. 11905220 and 11805273). J Xiao developed the algorithm and the SymPIC code and carried out the simulation on Tianhe 3 prototype at the National Supercomputer Center in Tianjin and Sunway Taihulight in the National Supercomputer Center in Wuxi. H Qin was supported by the U.S. Department of Energy (DE-AC02-09CH11466). H Qin contributed to the physical study of the self-consistent kinetic equilibrium and the KBMs.
More Information
  • Received Date: January 13, 2021
  • Revised Date: March 21, 2021
  • Accepted Date: March 22, 2021
  • Explicit structure-preserving geometric particle-in-cell (PIC) algorithm in curvilinear orthogonal coordinate systems is developed. The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research. The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms, discrete exterior calculus, and explicit non-canonical symplectic integration. In addition to the truncated infinitely dimensional symplectic structure, the algorithm preserves exactly many important physical symmetries and conservation laws, such as local energy conservation, gauge symmetry and the corresponding local charge conservation. As a result, the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics. The algorithm has been implemented in the SymPIC code, which is designed for high-efficiency massively-parallel PIC simulations in modern clusters. The code has been applied to carry out whole-device 6D kinetic simulation studies of tokamak physics. A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor. The state also admits a steady-state sub-sonic ion flow in the range of 10 km s−1, agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated. It is shown that high-n ballooning modes have larger growth rates than low-n global modes, and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2% level by the E × B flow generated by the instability. These results are consistent with early and recent electromagnetic gyrokinetic simulations.
  • [1]
    Dawson J M 1983 Rev. Mod. Phys. 55 403
    [2]
    Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: Taylor and Francis)
    [3]
    Birdsall C K and Langdon A B 1991 Plasma Physics via Computer Simulation (Bristol: IOP Publishing)
    [4]
    Yee K S et al 1966 IEEE Trans. Antennas Propag. 14 302
    [5]
    Boris J 1970 Proc. 4th Conf. on Numerical Simulation of Plasmas (Naval Research Laboratory, Washington D. C.)p 3
    [6]
    Stern A et al 2015 Geometric computational electrodynamics with variational integrators and discrete differential forms Geometry, Mechanics, and Dynamics ed D E Chang et al (New York: Springer) p 437
    [7]
    Qin H et al 2013 Phys. Plasmas 20 084503
    [8]
    He Y et al 2015 J. Comput. Phys. 281 135
    [9]
    Zhang R et al 2015 Phys. Plasmas 22 044501
    [10]
    Ellison C L, Burby J W and Qin H 2015 J. Comput. Phys.301 489
    [11]
    He Y et al 2016 J. Comput. Phys. 305 172
    [12]
    Tu X et al 2016 Phys. Plasmas 23 122514
    [13]
    Ueda H et al 1994 Comput. Phys. Commun. 79 249
    [14]
    Fu H et al 2016 Sci. China Inf. Sci. 59 072001
    [15]
    Squire J, Qin H and Tang W M 2012 Phys. Plasmas 19 084501
    [16]
    Xiao J et al 2013 Phys. Plasmas 20 102517
    [17]
    Xiao J et al 2015 Phys. Plasmas 22 112504
    [18]
    Xiao J et al 2015 Phys. Plasmas 22 092305
    [19]
    He Y et al 2015 Phys. Plasmas 22 124503
    [20]
    Qin H et al 2016 Nucl. Fusion 56 014001
    [21]
    He Y et al 2016 Phys. Plasmas 23 092108
    [22]
    Kraus M et al 2017 J. Plasma Phys. 83 905830401
    [23]
    Xiao J et al 2017 Phys. Plasmas 24 062112
    [24]
    Xiao J, Qin H and Liu J 2018 Plasma Sci. Technol. 20 110501
    [25]
    Xiao J and Qin H 2019 Nucl. Fusion 59 106044
    [26]
    Morrison P J 2017 Phys. Plasmas 24 055502
    [27]
    Holderied F et al 2020 J. Comput. Phys. 402 109108
    [28]
    Xiao J and Qin H Structure-preserving geometric particle-incell algorithm suppresses finite-grid instability—Comment on “Finite grid instability and spectral fidelity of the electrostatic particle-in-cell algorithm” by Huang et al arXiv:1904.00535v1
    [29]
    Li Y et al 2019 J. Comput. Phys. 396 381
    [30]
    Li Y, Sun Y and Crouseilles N 2020 J. Comput. Phys. 405 109172
    [31]
    Hirvijoki E, Kormann K and Zonta F 2020 Phys. Plasmas 27 092506
    [32]
    Perse B, Kormann K and Sonnendrücker E 2021 SIAM J. Sci.Comput. 43 B194
    [33]
    Zheng J et al 2020 Plasma Phys. Control. Fusion 62 125020
    [34]
    Wang Z et al Geometric electrostatic particle-in-cell algorithm on unstructured meshes arXiv:2012.08587
    [35]
    Kormann K and Sonnendrücker E 2021 J. Comput. Phys. 425 109890
    [36]
    Lin Z et al 1998 Science 281 1835
    [37]
    Zebin L et al 2013 Plasma Sci. Technol. 15 499
    [38]
    Ku S et al 2006 J. Phys.: Conf. Ser. 46 87
    [39]
    Chang C et al 2009 Phys. Plasmas 16 056108
    [40]
    Chen Y and Parker S E 2003 J. Comput. Phys. 189 463
    [41]
    Chen Y and Parker S E 2007 J. Comput. Phys. 220 839
    [42]
    Wang E et al 2012 Nucl. Fusion 52 103015
    [43]
    Lee T D 1983 Phys. Lett. B 122 217
    [44]
    Lee T D 1987 J. Stat. Phys. 46 843
    [45]
    Veselov A P 1988 Funktsional. Anal. i Prilozhen. 22 83
    [46]
    Marsden J E and West M 2001 Acta Numer. 10 357
    [47]
    Han-Ying G et al 2002 Commun. Theor. Phys. 37 257
    [48]
    Qin H 2020 Sci. Rep. 10 19329
    [49]
    Hutchinson I H et al 1994 Phys. Plasmas 1 1511
    [50]
    Greenwald M et al 1997 Nucl. Fusion 37 793
    [51]
    Ince-Cushman A et al 2009 Phys. Rev. Lett. 102 035002
    [52]
    Rice J E et al 2009 Nucl. Fusion 49 025004
    [53]
    Guan X et al 2013 Phys. Plasmas 20 102105
    [54]
    Guan X et al 2013 Phys. Plasmas 20 022502
    [55]
    Qin H 1998 Gyrokinetic theory and computational methods for electromagnetic perturbationsin tokamaks PhD Thesis Princeton University, Princeton, NJ p 08540
    [56]
    Qin H, Tang W M and Rewoldt G 1999 Phys. Plasmas 6 2544
    [57]
    Dong G et al 2019 Phys. Plasmas 26 010701
    [58]
    Xiao J et al 2016 Phys. Plasmas 23 112107
    [59]
    Zhou Y et al 2014 Phys. Plasmas 21 102109
    [60]
    Zhou Y et al 2016 Phys. Rev. E 93 023205
    [61]
    Zhou Y 2017 Variational integration for ideal magnetohydrodynamics and formation of current singularities PhD Thesis Princeton University, Princeton, NJ
    [62]
    Zhou Y et al 2017 Astrophys. J. 852 3
    [63]
    Burby J W and Tronci C 2017 Plasma Phys. Control. Fusion 59 045013
    [64]
    Chen Q et al 2017 J. Comput. Phys. 349 441
    [65]
    Shi Y, Fisch N J and Qin H 2016 Phys. Rev. A 94 012124
    [66]
    Shi Y et al 2018 Phys. Rev. E 97 053206
    [67]
    Shi Y 2018 Plasma physics in strong field regimes PhD Thesis Princeton University, Princeton, NJ
    [68]
    Shi Y, Qin H and Fisch N J Plasma physics in strong-field regimes: theories and simulations arXiv:2012.15363
    [69]
    Chen Q, Xiao J and Fan P J 2021 J. High Energy Phys.2021 127
    [70]
    Hirvijoki E, Kraus M and Burby J W Metriplectic particle-incell integrators for the Landau collision operator arXiv:1802.05263
    [71]
    Hirani A N 2003 Discrete exterior calculus PhD Thesis California Institute of Technology
    [72]
    Desbrun M et al Discrete exterior calculus arXix:math/0508341
    [73]
    Whitney H 1957 Geometric Integration Theory (Princeton:Princeton University Press)
    [74]
    Morrison P J 1980 Phys. Lett. A 80 383
    [75]
    Marsden J E and Weinstein A 1982 Physica D 4 394
    [76]
    Weinstein A and Morrison P J 1981 Phys. Lett. A 86 235
    [77]
    Burby J W 2017 Phys. Plasmas 24 032101
    [78]
    Iwinski Z R and Turski L A 1976 Lett. Appl. Eng. Sci. 4 179
    [79]
    de Vogelaere R 1956 Methods of integration which preserve the contact transformation property of the Hamilton Equations Technical Report University of Notre Dame
    [80]
    Ruth R D 1983 IEEE Trans. Nucl. Sci. 30 2669
    [81]
    Feng K 1985 On difference schemes and sympletic geometry Proc. 1984 Beijing Symp. on Differential Geometry and Differential Equations p 42
    [82]
    Feng K 1986 J. Comput. Math. 4 279
    [83]
    Sanz-Serna J M 1988 BIT Numer. Math. 28 877
    [84]
    Yoshida H 1990 Phys. Lett. A 150 262
    [85]
    Forest E and Ruth R D 1990 Physica D 43 105
    [86]
    Channell P J and Scovel C 1990 Nonlinearity 3 231
    [87]
    Candy J and Rozmus W 1991 J. Comput. Phys. 92 230
    [88]
    Tang Y 1993 Comput. Math. Appl. 25 83
    [89]
    Sanz-Serna J M and Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman and Hall)
    [90]
    Shang Z 1994 J. Comput. Math. 2 265
    [91]
    Kang F and Zai-jiu S 1995 Numer. Math. 71 451
    [92]
    Shang Z 1999 Numer. Math. 83 477
    [93]
    Hairer E, Lubich C and Wanner G 2002 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (New York: Springer)
    [94]
    Hong J and Qin M Z 2002 Appl. Math. Lett. 15 1005
    [95]
    Shang Z 2006 J. Phys. A: Math. Gen. 39 5601
    [96]
    Feng K and Qin M 2010 Symplectic Geometric Algorithms for Hamiltonian Systems (New York: Springer)
    [97]
    Zhang R et al 2016 Phys. Rev. E 94 013205
    [98]
    Tao M L 2016 J. Comput. Phys. 327 245
    [99]
    Qin H and Guan X 2008 Phys. Rev. Lett. 100 035006
    [100]
    Qin H, Guan X and Tang W M 2009 Phys. Plasmas 16 042510
    [101]
    Squire J, Qin H and Tang W M 2012 Phys. Plasmas 19 052501
    [102]
    Zhang R et al 2014 Phys. Plasmas 21 032504
    [103]
    Ellison C L et al 2015 Plasma Phys. Control. Fusion 57 054007
    [104]
    Burby J W and Ellison C L 2017 Phys. Plasmas 24 110703
    [105]
    Kraus M Projected variational integrators for degenerate Lagrangian systems arXiv:1708.07356v1
    [106]
    Ellison C L et al 2018 Phys. Plasmas 25 052502
    [107]
    Ellison C L 2016 Development of multistep and degenerate variational integrators for applications in plasma physics PhD Thesis Princeton University, Princeton, NJ
    [108]
    He Y et al 2017 Phys. Lett. A 381 568
    [109]
    Zhou Z et al 2017 Phys. Plasmas 24 052507
    [110]
    Xiao J and Qin H 2019 Comput. Phys. Commun. 241 19
    [111]
    Shi Y et al 2019 Numer. Algorithms 81 1295
    [112]
    Xiao J and Qin H Slow manifolds of classical Pauli particle enable structure-preserving geometric algorithms for guiding center dynamics arXiv:2006.03818v1
    [113]
    Crouseilles N, Einkemmer L and Faou E 2015 J. Comput.Phys. 283 224
    [114]
    Qin H et al 2015 J. Comput. Phys. 297 721
    [115]
    Glasser A S and Qin H 2020 J. Plasma Phys. 86 835860303
    [116]
    Glasser A S and Qin H Restoring Poincaré symmetry to the lattice arXiv:1902.04396v1
    [117]
    Glasser A S and Qin H Lifting spacetimeʼs Poincaré symmetries arXiv:1902.04395v1
    [118]
    Xiao J et al 2019 Phys. Lett. A 383 808
    [119]
    Tang W M, Connor J W and Hastie R J 1980 Nucl. Fusion 20 1439
    [120]
    Lauber P et al 2007 J. Comput. Phys. 226 447
    [121]
    Hahm T S 1988 Phys. Fluids 31 2670
    [122]
    Brizard A 1989 J. Plasma Phys. 41 541
    [123]
    Qin H, Tang W M and Rewoldt G 1998 Phys. Plasmas 5 1035
    [124]
    Qin H et al 1999 Phys. Plasmas 6 1575
    [125]
    Qin H, Tang W M and Lee W W 2000 Phys. Plasmas 7 4433
    [126]
    Sugama H 2000 Phys. Plasmas 7 466
    [127]
    Qin H and Tang W M 2004 Phys. Plasmas 11 1052
    [128]
    Qin H 2005 A Short Introduction to General Gyrokinetic Theory (Princeton, NJ: Princeton Plasma Physics Lab.)
    [129]
    Qin H et al 2007 Phys. Plasmas 14 056110
    [130]
    Burby J W et al 2015 Phys. Lett. A 379 2073
    [131]
    Burby J W 2015 Chasing hamiltonian structure in gyrokinetic theory PhD Thesis Princeton University, Princeton, NJ
    [132]
    Burby J W and Brizard A J 2019 Phys. Lett. A 383 2172
    [133]
    Wan W et al 2012 Phys. Rev. Lett. 109 185004
    [134]
    Wan W et al 2013 Phys. Plasmas 20 055902
    [135]
    Pueschel M J, Kammerer M and Jenko F 2008 Phys. Plasmas 15 102310
    [136]
    Okuda H 1972 J. Comput. Phys. 10 475
    [137]
    Cohen B I, Langdon A B and Friedman A 1982 J. Comput.Phys. 46 15
    [138]
    Langdon A B, Cohen B I and Friedman A 1983 J. Comput.Phys. 51 107
    [139]
    Cohen B I et al 1989 J. Comput. Phys. 81 151
    [140]
    Liewer P C and Decyk V K 1989 J. Comput. Phys. 85 302
    [141]
    Friedman A et al 1991 J. Comput. Phys. 96 54
    [142]
    Eastwood J W 1991 Comput. Phys. Commun. 64 252
    [143]
    Cary J R and Doxas I 1993 J. Comput. Phys. 107 98
    [144]
    Villasenor J and Buneman O 1992 Comput. Phys. Commun.69 306
    [145]
    Qin H, Davidson R C and Lee W W 2000 Phys. Rev. Spec.Top. Accel. Beams 3 084401
    [146]
    Qin H, Davidson R C and Lee W W 2000 Phys. Lett. A 272 389
    [147]
    Qin H et al 2001 Nucl. Instrum. Methods Phys. Res. A 464 477
    [148]
    Davidson R C and Qin H 2001 Physics of Intense Charged Particle Beams in High Energy Accelerators (London:Imperial College Press)
    [149]
    Esirkepov T Z 2001 Comput. Phys. Commun. 135 144
    [150]
    Vay J-L et al 2002 Laser Part. Beams 20 569
    [151]
    Nieter C and Cary J R 2004 J. Comput. Phys. 196 448
    [152]
    Huang C et al 2006 J. Comput. Phys. 217 658
    [153]
    Crouseilles N, Mehrenberger M and Sonnendrucker E 2007 J. Comput. Phys. 229 1927
    [154]
    Chen G, Chacón L and Barnes D C 2011 J. Comput. Phys.230 7018
    [155]
    Chacón L, Chen G and Barnes D C 2013 J. Comput. Phys.233 1
    [156]
    Evstatiev E G and Shadwick B A 2013 J. Comput. Phys.245 376
    [157]
    Shadwick B A, Stamm A B and Evstatiev E G 2014 Phys.Plasmas 21 055708
    [158]
    Moon H, Teixeira F L and Omelchenko Y A 2015 Comput.Phys. Commun. 194 43
    [159]
    Huang C-K et al 2016 Comput. Phys. Commun. 207 123
    [160]
    Webb S D 2016 Plasma Phys. Control. Fusion 58 034007
    [161]
    Zeiler A, Drake J F and Rogers B 1997 Phys. Plasmas 4 2134
    [162]
    Xu X Q et al 2010 Phys. Rev. Lett. 105 175005
    [163]
    Ricci P et al 2012 Plasma Phys. Control. Fusion 54 124047
    [164]
    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
  • Related Articles

    [1]Dehui Li, Yong Chia Thio, Li Jia. Development and benchmark simulations of a hybrid fluid particle-in-cell code SHYPIC[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adcdab
    [2]Yuqiang ZHANG, Xingang YU, Zongbiao YE. Particle-in-cell simulations of EUV-induced hydrogen plasma in the vicinity of a reflective mirror[J]. Plasma Science and Technology, 2024, 26(8): 085503. DOI: 10.1088/2058-6272/ad48d0
    [3]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [4]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [5]Jianyuan XIAO (肖建元), Hong QIN (秦宏), Jian LIU (刘健). Structure-preserving geometric particle-in- cell methods for Vlasov-Maxwell systems[J]. Plasma Science and Technology, 2018, 20(11): 110501. DOI: 10.1088/2058-6272/aac3d1
    [6]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [7]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [8]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [9]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [10]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
  • Cited by

    Periodical cited type(23)

    1. Qin, H., Kolmes, E.J., Updike, M. et al. Gromov ground state in phase space engineering for fusion energy. Physical Review E, 2025, 111(2): 025205. DOI:10.1103/PhysRevE.111.025205
    2. Zheng, J., Wang, G., Li, B. A hybrid Eulerian-Lagrangian Vlasov method for nonlinear wave-particle interaction in weakly inhomogeneous magnetic field. Computer Physics Communications, 2025. DOI:10.1016/j.cpc.2024.109362
    3. Liu, Y., Liu, Z., Liu, J. et al. High-resolution simulations of nonlinear electromagnetic turbulence in tokamak devices. European Physical Journal: Special Topics, 2025. DOI:10.1140/epjs/s11734-025-01566-3
    4. Angus, J.R., Farmer, W., Friedman, A. et al. An implicit particle code with exact energy and charge conservation for studies of dense plasmas in axisymmetric geometries. Journal of Computational Physics, 2024. DOI:10.1016/j.jcp.2024.113427
    5. Zhang, R., Wang, Z., Xiao, J. et al. Structure-preserving algorithms for guiding center dynamics based on the slow manifold of classical Pauli particle. Plasma Science and Technology, 2024, 26(6): 065101. DOI:10.1088/2058-6272/ad225b
    6. Qin, H.. Advanced fuel fusion, phase space engineering, and structure-preserving geometric algorithms. Physics of Plasmas, 2024, 31(5): 050601. DOI:10.1063/5.0203707
    7. Powis, A.T., Kaganovich, I.D. Accuracy of the explicit energy-conserving particle-in-cell method for under-resolved simulations of capacitively coupled plasma discharges. Physics of Plasmas, 2024, 31(2): 023901. DOI:10.1063/5.0174168
    8. Ren, J., Lapenta, G. Recent development of fully kinetic particle-in-cell method and its application to fusion plasma instability study. Frontiers in Physics, 2024. DOI:10.3389/fphy.2024.1340736
    9. Fan, P., Chen, Q., Xiao, J. et al. High-order field theory and a weak Euler-Lagrange-Barut equation for classical relativistic particle-field systems. Plasma Science and Technology, 2023, 25(11): 115001. DOI:10.1088/2058-6272/acdc07
    10. Ramachandran, O.H., Kempel, L.C., Verboncoeur, J.P. et al. A Necessarily Incomplete Review of Electromagnetic Finite Element Particle-in-Cell Methods. IEEE Transactions on Plasma Science, 2023, 51(7): 1718-1728. DOI:10.1109/TPS.2023.3257165
    11. Zonta, F., Pusztay, J.V., Hirvijoki, E. Multispecies structure-preserving particle discretization of the Landau collision operator. Physics of Plasmas, 2022, 29(12): 123906. DOI:10.1063/5.0105182
    12. Ye, E., Loureiro, N.F.G. Quantum-inspired method for solving the Vlasov-Poisson equations. Physical Review E, 2022, 106(3): 035208. DOI:10.1103/PhysRevE.106.035208
    13. Liu, Z.X., Liu, Y.J., Xiao, J.Y. et al. Experimental and theoretical study of weakly coherent mode in I-mode edge plasmas in the EAST tokamak. Nuclear Fusion, 2022, 62(8): 086029. DOI:10.1088/1741-4326/ac7537
    14. Chen, Y., Cheng, J., Parker, S.E. Evolution of the marker distribution in gyrokinetic δ f particle-in-cell simulations. Physics of Plasmas, 2022, 29(7): 073901. DOI:10.1063/5.0097207
    15. Hirvijoki, E., Burby, J.W., Brizard, A.J. Metriplectic foundations of gyrokinetic Vlasov-Maxwell-Landau theory. Physics of Plasmas, 2022, 29(6): 060701. DOI:10.1063/5.0091727
    16. Glasser, A.S., Qin, H. A gauge-compatible Hamiltonian splitting algorithm for particle-in-cell simulations using finite element exterior calculus. Journal of Plasma Physics, 2022, 88(2): 835880202. DOI:10.1017/S0022377822000290
    17. McLachlan, R.I.. Tuning Symplectic Integrators is Easy and Worthwhile. Communications in Computational Physics, 2022, 31(3): 987-996. DOI:10.4208/CICP.OA-2021-0154
    18. Zheng, J., Zhu, G., Chen, J. et al. Structure-preserving particle-in-cell simulation of lower hybrid wave propagation and heating in the magnetic mirror. Nuclear Fusion, 2021, 61(12): 126028. DOI:10.1088/1741-4326/ac2d57
    19. Xiao, J., Chen, J., Yang, C. et al. Symplectic Structure-Preserving Particle-in-Cell Whole-Volume Simulation of Tokamak Plasmas to 111.3 Trillion Particles and 25.7Billion Grids. International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2021. DOI:10.1145/3458817
    20. Crawford, Z.D., O'Connor, S., Luginsland, J. et al. Rubrics for Charge Conserving Current Mapping in Finite Element Electromagnetic Particle in Cell Methods. IEEE Transactions on Plasma Science, 2021, 49(11): 3719-3732. DOI:10.1109/TPS.2021.3122410
    21. O'Connor, S., Crawford, Z.D., Ramachandran, O.H. et al. Time integrator agnostic charge conserving finite element PIC. Physics of Plasmas, 2021, 28(9): 1ENG. DOI:10.1063/5.0046842
    22. Zonta, F., Iorio, R., Burby, J.W. et al. Dispersion relation for gauge-free electromagnetic drift kinetics. Physics of Plasmas, 2021, 28(9): 092504. DOI:10.1063/5.0058118
    23. Wang, Z., Qin, H., Sturdevant, B. et al. Geometric electrostatic particle-in-cell algorithm on unstructured meshes. Journal of Plasma Physics, 2021, 87(4): 905870406. DOI:10.1017/S0022377821000702

    Other cited types(0)

Catalog

    Article views (181) PDF downloads (304) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return