Advanced Search+
Shaoshuai GUO (郭韶帅), Kai XIE (谢楷), Bin SUN (孙斌), Ruoyao XI (席若尧), Yan LIU (刘艳). Experiment on low-frequency electromagnetic waves propagating in shock-tube-generated magnetized cylindrical enveloping plasma[J]. Plasma Science and Technology, 2021, 23(7): 75401-075401. DOI: 10.1088/2058-6272/abf998
Citation: Shaoshuai GUO (郭韶帅), Kai XIE (谢楷), Bin SUN (孙斌), Ruoyao XI (席若尧), Yan LIU (刘艳). Experiment on low-frequency electromagnetic waves propagating in shock-tube-generated magnetized cylindrical enveloping plasma[J]. Plasma Science and Technology, 2021, 23(7): 75401-075401. DOI: 10.1088/2058-6272/abf998

Experiment on low-frequency electromagnetic waves propagating in shock-tube-generated magnetized cylindrical enveloping plasma

Funds: This work was supported by National Natural Science Foundation of China (Nos. 61771370, and 11704296). The authors thankfully acknowledge the help from Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center.
More Information
  • Received Date: January 06, 2021
  • Revised Date: April 17, 2021
  • Accepted Date: April 18, 2021
  • We propose a method of applying a static magnetic field to reduce the attenuation of the magnetic field component (SH) of low-frequency electromagnetic (LF EM) waves in dense plasma. The principle of this method is to apply a static magnetic field to limit electron movement, thereby increasing the equivalent resistance and thus reducing the induced current and SH. We consider the static magnetic field acting on the plasma of the entire induced current loop rather than on the local plasma, where the induced current is excited by the magnetic field component of LF EM waves. Analytical expressions of SH suitable for magnetized cylindrical enveloping plasma are derived by adopting an equivalent circuit approach, by which SH is calculated with respect to various plasma parameter settings. The results show that SH can be reduced under a static magnetic field and the maximum magnetic field strength that mitigates blackout is less than 0.1 T. Experiments in which LF EM waves propagate in a shock-tube-generated magnetized cylindrical enveloping plasma are also conducted. SH measured under the magnetic field (the magnetic field strength B0 acting on the magnetic field probe was about 0.06 T) reduces at f = 10 MHz and f = 30 MHz when ne ≈ 1.9 × 1013 cm−3, which is consistent with theoretical results. The verification of the theory thus suggests that applying a static magnetic field with a weak magnetic field has the potential to improve the transmission capacity of LF EM waves in dense plasma.
  • [1]
    Belov I F et al 2001 J. Spacecr. Rockets 38 249
    [2]
    Hunter S R et al 1989 J. Chem. Phys. 90 4879
    [3]
    Kowari K, Leung K and Shizgal B D 1989 J. Chem. Phys.108 1587
    [4]
    Hodara H 1961 Proc. IRE 49 1825
    [5]
    Russo F P and Hughes J K 1964 Measurement of the Effects of Static Magnetic Field on VHF Transmission in Ionized Flow Field NASA TM X-907 (Washington, DC: NASA)
    [6]
    Rawhouser R 1971 Overview of the AF avionics laboratory reentry electromagnetics program The Entry Plasma Sheath and Its Effect on Space Vehicle Electromagnetic Systems, NASA SP-252 (Washington, DC: NASA)
    [7]
    Starkey R 2003 Electromagnetic wave/magnetoactive plasma sheath interaction for hypersonic vehicle telemetry blackout analysis Proc. 34th AIAA Plasmadynamics and Lasers Conf.(Orlando, FL: AIAA)
    [8]
    Liu T J and Zheng J P 1988 J. Astronaut. 1 (in Chinese) (https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD8589&filename=YHXB198801001&v=MGghc6ouZhZAvOOUswZJyRGIUg%25mmd2BsSmlD%25mmd2B1XAUfDRFIgbZ6B7CK6oBomXeeNy3Lb9)
    [9]
    Keidar M, Kim M and Boyd I D 2008 J. Spacecr. Rockets 45 445
    [10]
    Kim M K 2009 Electromagnetic manipulation of plasma layer for re-entry blackout mitigation PhD Thesis University of Michigan
    [11]
    Yu Z F et al 2011 J. Astronaut. 32 1564 (in Chinese)
    [12]
    Cheng J J et al 2017 J. Appl. Phys. 121 093301
    [13]
    Zhou H et al 2017 IEEE Trans. Plasma Sci. 45 15
    [14]
    Liu W B et al 2019 IEEE Trans. Plasma Sci. 47 1808
    [15]
    Guo S S et al 2020 Plasma Sci. Technol. 22 125301
    [16]
    Chen W et al 2017 Acta Phys. Sin. 66 084102
    [17]
    Guo L J et al 2017 Phys. Plasmas 24 022108
    [18]
    Takahashi Y et al 2020 J. Phys. D: Appl. Phys. 53 235203
    [19]
    Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp.Electron. Syst. AES-7 879
    [20]
    Hartunian R A et al 2007 Causes and mitigation of rf blackout during reentry of reusable launch vehicles Aerospace Report No. ATR-2007 (5309)-1 The Aerospace Corporation
    [21]
    Liu D L et al 2017 J. Appl. Phys. 121 074903
    [22]
    Xie K et al 2019 Phys. Plasmas 26 073509
    [23]
    Xie K et al 2019 Rev. Sci. Instrum. 90 073503
    [24]
    Stenzel R L and Urrutia J M 2013 J. Appl. Phys. 113 103303
    [25]
    Ma P et al 2010 J. Exp. Fluid Mech. 5 51 (in Chinese)
    [26]
    Zhu N Y et al 2004 Acta Mech. Sin. 20 212
    [27]
    Zhu N Y et al 2013 Acta Mech. Sin. 29 189
    [28]
    Lyu X T et al 2017 IEEE Trans. Plasma Sci. 45 2450
    [29]
    Yang S Y 2006 Electromagnetic Interference Shielding Theory and Practice (Beijing: National Defense Industry Press) (in Chinese)
    [30]
    Xie K et al 2013 Rev. Sci. Instrum. 84 104710
    [31]
    Banks P M and Kockarts G 1973 Aeronomy: Part A (New York: Academic)
    [32]
    National Technical Information Service Document 1971 The Entry Plasma sheath and its Effect on Space Vehicle Electromagnetic Systems, NASA SP-252 (https://ui.adsabs.harvard.edu/abs/1971NASSP.252KK/abstract)
  • Related Articles

    [1]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [2]Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
    [3]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [4]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [5]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [6]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(3)

    1. Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643
    2. Wang, Y., Zhou, Y., Wu, H. et al. Computational study of microdischarges driven by electron beam injection with particle-in-cell/Monte Carlo collision simulations. Journal of Applied Physics, 2022, 131(16): 163301. DOI:10.1063/5.0087004
    3. Wang, F., Zhang, S., Liu, Y. et al. Instability mechanism and discharge regime diagnosis of microthrusters based on plasma properties. Applied Optics, 2021, 60(4): 1021-1030. DOI:10.1364/AO.414608

    Other cited types(0)

Catalog

    Article views (162) PDF downloads (218) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return