Advanced Search+
Muhammad Usman Aslam BHATTI, Shazia BASHIR, Asma HAYAT, Khaliq MAHMOOD, Rana AYUB, Mubashir JAVED, Muhammad Shahzad KHAN. Energy and flux measurements of laser-induced silver plasma ions by using Faraday cup[J]. Plasma Science and Technology, 2021, 23(8): 85510-085510. DOI: 10.1088/2058-6272/ac0417
Citation: Muhammad Usman Aslam BHATTI, Shazia BASHIR, Asma HAYAT, Khaliq MAHMOOD, Rana AYUB, Mubashir JAVED, Muhammad Shahzad KHAN. Energy and flux measurements of laser-induced silver plasma ions by using Faraday cup[J]. Plasma Science and Technology, 2021, 23(8): 85510-085510. DOI: 10.1088/2058-6272/ac0417

Energy and flux measurements of laser-induced silver plasma ions by using Faraday cup

More Information
  • Received Date: January 07, 2021
  • Revised Date: May 15, 2021
  • Accepted Date: May 19, 2021
  • Silver (Ag) plasma has been generated by employing Nd:YAG laser (532 nm, 6 ns) laser irradiation. The energy and flux of ions have been evaluated by using Faraday cup (FC) using time of flight (TOF) measurements. The dual peak signals of fast and slow Ag plasma ions have been identified. Both energy and flux of fast and slow ions tend to increase with increasing irradiance from 7 GW cm−2 to 17.9 GW cm−2 at all distances of FC from the target surface. Similarly a decreasing trend of energies and flux of ions has been observed with increasing distance of FC from the target. The maximum value of flux of the fast component is 21.2 × 1010 cm−2, whereas for slow ions the maximum energy and flux values are 8.8 keV, 8.2 × 1012 cm−2 respectively. For the analysis of plume expansion dynamics, the angular distribution of ion flux measurement has also been performed. The overall analysis of both spatial and angular distributions of Ag ions revealed that the maximum flux of Ag plasma ions has been observed at an optimal angle of ~15°. In order to confirm the ion acceleration by ambipolar field, the self-generated electric field (SGEF) measurements have also been performed by electric probe; these SGEF measurements tend to increase by increasing laser irradiance. The maximum value of 232 V m−1 has been obtained at a maximum laser irradiance of 17.9 GW cm−2.
  • [1]
    Wu D et al 2019 Phys. Plasmas 26 013303
    [2]
    Wu T et al 2020 Plasma Sci. Technol. 22 105503
    [3]
    Shaim H A, Wilson F G and Elsayed-Ali H E 2017 J. Appl.Phys. 121 185901
    [4]
    Shaw G et al 2020 Phys. Scr. 2020 014029
    [5]
    Cao J et al 2017 JOSA B 34 160
    [6]
    Zhang D et al 2020 Optik 202 163511
    [7]
    Farid N et al 2013 Phys. Plasmas 20 073114
    [8]
    Khalid A et al 2016 Optik 127 5128
    [9]
    Nica P et al 2017 Phys. Plasmas 24 103119
    [10]
    Tulej M et al 2018 J. Anal. At. Spectrom. 33 1292
    [11]
    Everson E et al 2009 Rev. Sci. Instrum. 80 113505
    [12]
    Bonofiglo P et al 2020 Review of Scientific Instruments 91 093502
    [13]
    Doria D et al 2004 Rev. Sci. Instrum. 75 387
    [14]
    Elsied A M et al 2016 J. Appl. Phys. 120 173104
    [15]
    Shaim H A and Elsayed-Ali H E 2017 J. Appl. Phys. 122 203301
    [16]
    Láska L et al 2008 Laser Part. Beams 26 555
    [17]
    Torrisi L et al 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 184 327
    [18]
    Ahmad H et al 2020 IEEE T. Plasma Sci. 48 4191
    [19]
    Ahmat L et al 2014 Phys. Plasmas 21 093501
    [20]
    Li Y N, Wu Y L and Ong B S 2005 J. Am. Chem. Soc.127 3266
    [21]
    Hafeez S, Shaikh N M and Baig M A 2008 Laser Part. Beams 26 41
    [22]
    Bulgakova N M, Bulgakov A V and Bobrenok O F 2000 Phys.Rev. E 62 5624
    [23]
    Decoste R and Ripin B H 1978 Phys. Rev. Lett. 40 34
    [24]
    Shaim H A and Elsayed-Ali H E 2018 Vacuum 154 32
    [25]
    Harilal S et al 2006 J. Appl. Phys. 99 083303
    [26]
    Abbasi S A et al 2016 Laser Part. Beams 34 606
    [27]
    Torrisi L 2016 Radiat. Eff. Defects Solids 171 34
    [28]
    Saquilayan G Q and Wada M 2017 AIP Conf. Proc. 1869 040003
    [29]
    Torrisi L 2018 Opt. Laser Technol. 99 7
    [30]
    Mohanty S R et al 2005 Jpn. J. Appl. Phys. 44 5199
    [31]
    Hora H 1975 J. Opt. Soc. Am. 65 882
    [32]
    Láska L et al 2004 Rev. Sci. Instrum. 75 1588
    [33]
    Tahir M B et al 2017 Indian J. Pure App. Phy. 55 145 (https://www.researchgate.net/publication/313720227_Electron_emission_characterization_of_laser-induced_gaseous_plasma)
    [34]
    Maldonado C A et al 2020 Rev. Sci. Instrum. 91 013303
    [35]
    Campos D, Harilal S S and Hassanein A 2010 Appl. Phys. Lett.96 151501
    [36]
    Mushtaq R et al 2020 Optik 207 163866
    [37]
    Walters C T, Barnes R H and Beverly R E III 1978 J. Appl.Phys. 49 2937
    [38]
    Rafique M S et al 2008 Plasma Sci. Technol. 10 450
    [39]
    Yao X 2018 An insight into the expansion of laser induced plasmas PhD Thesis Ulm University (https://doi.org/10.3929/ethz-b-000298416)
    [40]
    Ni X et al 2014 Appl. Phys. A 117 111
    [41]
    Ilyas B et al 2011 J. Phys. D Appl. Phys. 44 295202
    [42]
    Amoruso S et al 1996 Appl. Surf. Sci. 106 507
    [43]
    Wang X H et al 2014 Spectrochim. Acta B 99 101
    [44]
    Apinaniz J I et al 2012 Plasma Sourc. Sci. Technol. 21 015016
    [45]
    Bagchi S et al 2007 Appl. Phys. B 88 167
    [46]
    Kabashin A et al 1998 Appl. Phys. Lett. 73 25
    [47]
    Ageev V et al 1979 Zh. Eksp. Teor. Fiz 76 158 (https://www.researchgate.net/publication/234313319_Electric_field_of_a_plasma_generated_by_optical_breakdown_in_air)
    [48]
    Fuentes J M P et al 2013 J. Phys. D 46 495202
    [49]
    Goncharov N I et al 1977 JETP Lett 26 407 (https://www.researchgate.net/publication/241256191_Electric_field_of_a_laser_spark_ignited_near_a_conducting_target)
  • Related Articles

    [1]Xiaoming ZHONG, Xiaolan ZOU, Chu ZHOU, Adi LIU, Ge ZHUANG, Xi FENG, Jin ZHANG, Jiaxu JI, Hongrui FAN, Shen LIU, Shifan WANG, Liutian GAO, Wenxiang SHI, Tao LAN, Hong LI, Jinlin XIE, Wenzhe MAO, Zixi LIU, Wandong LIU. Comparison of methods for turbulence Doppler frequency shift calculation in Doppler reflectometer[J]. Plasma Science and Technology, 2023, 25(9): 095104. DOI: 10.1088/2058-6272/acc8ba
    [2]Borui ZHENG, Yuanzhong JIN, Minghao YU, Yueqiang LI, Bin WU, Quanlong CHEN. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation[J]. Plasma Science and Technology, 2022, 24(11): 114003. DOI: 10.1088/2058-6272/ac72e2
    [3]C LECHTE, G D CONWAY, TGÖRLER, T HAPPEL, the ASDEXUpgrade Team. Fullwave Doppler reflectometry simulations for density turbulence spectra in ASDEX Upgrade using GENE and IPF-FD3D[J]. Plasma Science and Technology, 2020, 22(6): 64006-064006. DOI: 10.1088/2058-6272/ab7ce8
    [4]A KRÄMER-FLECKEN, X HAN, M OTTE, G ANDA, S A BOZHENKOV, D DUNAI, G FUCHERT, J GEIGER, O GRULKE, E PASCH, E R SCOTT, E TRIER, M VÉCSEI, T WINDISCH, S ZOLETNIK, the W7-X Team. Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations[J]. Plasma Science and Technology, 2020, 22(6): 64004-064004. DOI: 10.1088/2058-6272/ab770c
    [5]Ting WU (吴婷), Lin NIE (聂林), Min XU (许敏), Jie YANG (阳杰), Zhipeng CHEN (陈志鹏), Yuejiang SHI (石跃江), Nengchao WANG (王能超), Da LI (李达), Rui KE (柯锐), Yi YU (余羿), Shaobo GONG (龚少博), Ting LONG (龙婷), Yihang CHEN (陈逸航), Bing LIU (刘兵), J-TEXT Team. Effect of resonant magnetic perturbation on boundary plasma turbulence and transport on J-TEXT tokamak[J]. Plasma Science and Technology, 2019, 21(12): 125102. DOI: 10.1088/2058-6272/ab4369
    [6]Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013
    [7]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(10)

    1. Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86
    2. Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484
    3. Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566
    4. Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131
    5. Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949
    6. Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271
    7. Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588
    8. Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848
    9. Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744
    10. Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915

    Other cited types(0)

Catalog

    Article views (118) PDF downloads (180) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return