Advanced Search+
Yuanzheng ZHAO (赵元政), Sheng TAN (谭胜), Jianjun WU (吴建军), Yu ZHANG (张宇), Yang OU (欧阳), Peng ZHENG (郑鹏). The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant[J]. Plasma Science and Technology, 2021, 23(10): 104007. DOI: 10.1088/2058-6272/ac10ff
Citation: Yuanzheng ZHAO (赵元政), Sheng TAN (谭胜), Jianjun WU (吴建军), Yu ZHANG (张宇), Yang OU (欧阳), Peng ZHENG (郑鹏). The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant[J]. Plasma Science and Technology, 2021, 23(10): 104007. DOI: 10.1088/2058-6272/ac10ff

The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant

Funds: This research was supported by National Natural Science Foundation of China (No. 11772354).
More Information
  • Received Date: April 15, 2021
  • Revised Date: June 22, 2021
  • Accepted Date: July 01, 2021
  • In this study, a laser-assisted pulsed plasma thruster (LA-PPT) with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration. Owing to the unique structure of the thruster, metals can also be used as propellants, and a higher specific impulse is expected. The ablation quality, morphology, and plume distribution of various metals (aluminium alloy, red copper, and carbon steel) with different laser energies were studied experimentally. The ablation morphology and plume distribution of red copper were more uniform, as compared to those of other metals, and the ablation quality was higher, indicating its greater suitability for LA-PPT. The plume generated by nanosecond laser ablation of aluminium alloy expanded faster, which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter. In addition, when the background pressure was 0.005 Pa, an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy, which may significantly reduce the utilisation rate of the propellant.
  • [1]
    Zhang Z et al 2019 Plasma Sources Sci. Technol. 28 025008
    [2]
    Zhang Z et al 2019 Rev. Mod. Phys. 3 5
    [3]
    Ou Y et al 2019 Vacuum 165 163
    [4]
    Zhang Y et al 2020 Plasma Sci. Technol. 22 045501
    [5]
    Zhou Y et al 2020 Plasma Sci. Technol. 22 065504
    [6]
    Lau M and Herdrich G 2014 Vacuum 110 165
    [7]
    Koizumi H et al 2007 Phys. Plasmas 14 033506
    [8]
    Zhang Z et al 2020 J. Phys. D: Appl. Phys. 53 475201
    [9]
    Ling W Y L, Schönherr T and Koizumi H 2017 J. Appl. Phys.121 073301
    [10]
    Horisawa H et al 2003 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (Huntsville, Alabama,20–23 July 2003) 5028
    [11]
    Horisawa H et al 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (Fort Lauderdale, Florida, 11–14 July 2004) 3937
    [12]
    Kawakami M et al 2004 AIP Conf. Proc. 702 456
    [13]
    Zhang Y et al 2016 Acta Astronaut. 127 438
    [14]
    Tan S et al 2020 Energies 13 3321
    [15]
    Schall W O, Tegel J and Eckel H A 2005 AIP Conf. Proc.766 423
    [16]
    Phipps C et al 2010 J. Propul. Power 26 609
    [17]
    Pakhomov A V, Thompson M S and Gregory D A 2003 AIP Conf. Proc. 664 194
    [18]
    Zheng Z Y et al 2006 Appl. Phys. A 83 329
    [19]
    Mahmood S et al 2010 Phys. Plasmas 17 103105
    [20]
    Yu C H et al 2020 IEEE Access 8 205272
    [21]
    Fikry M, Tawfik W and Omar M M 2020 Opt. Quant.Electron. 52 249
    [22]
    Ou Y et al 2021 Acta Astronaut. 183 199
    [23]
    Singh R K and Narayan J 1990 Phys. Rev. B 41 8843
    [24]
    Harilal S S et al 2002 J. Phys. D: Appl. Phys. 35 2935
    [25]
    Abdelli-Messaci S et al 2009 Spectrochim. Acta Part B: At.Spectrosc. 64 968
    [26]
    Bulgakova N M, Bulgakov A V and Bobrenok O F 2000 Phys.Rev. E 62 5624
    [27]
    Amoruso S et al 2006 Appl. Surf. Sci. 252 4712
    [28]
    Valverde-Alva M A et al 2014 Rev. Mex. Fis. 60 195
    [29]
    Mahmood S et al 2010 Appl. Phys. A 101 695
    [30]
    Thareja R K, Misra A and Franklin S R 1998 Spectrochim.Acta Part B: At. Spectrosc. 53 1919
  • Related Articles

    [1]Luying NIU(牛璐莹), Hongrui CAO (曹宏睿), Kun XU(徐坤), Liqun HU(胡立群). Neutronic analysis of ITER radial x-ray camera[J]. Plasma Science and Technology, 2019, 21(2): 25601-025601. DOI: 10.1088/2058-6272/aaeba5
    [2]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [3]Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599
    [4]Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f
    [5]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [6]Zhigang ZHU (朱志刚), Qiyong ZHANG (张启勇), Yuntao SONG (宋云涛), Ming ZHUANG (庄明), Zhiwei ZHOU (周芷伟), Anyi CHENG (成安义), Ping ZHU (朱平). Present status and one upgrading method with a cold compressor of the EAST sub-cooling helium cryogenic system[J]. Plasma Science and Technology, 2017, 19(5): 55603-055603. DOI: 10.1088/2058-6272/aa58da
    [7]CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14
    [8]DING Xuecheng (丁学成), ZHANG Zicai (张子才), LIANG Weihua (梁伟华), CHU Lizhi (褚立志), DENG Zechao (邓泽超), WANG Yinglong (王英龙). Monte Carlo Simulation of Laser-Ablated Particle Splitting Dynamic in a Low Pressure Inert Gas[J]. Plasma Science and Technology, 2016, 18(6): 641-646. DOI: 10.1088/1009-0630/18/6/10
    [9]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [10]WU Yongpeng(吴永鹏), TANG Bin(汤彬). Monte-Carlo Simulation of Response Functions for Natural Gamma-rays in LaBr3 Detector System with Complex Borehole Configurations[J]. Plasma Science and Technology, 2012, 14(6): 481-487. DOI: 10.1088/1009-0630/14/6/10
  • Cited by

    Periodical cited type(2)

    1. Zhang, M., Zhong, G., Huang, J. et al. Research on fusion neutron energy spectrum measurement using a Bonner sphere spectrometer based on a 4H-SiC detector | [基于 4H-SiC 探测器多球谱仪的聚变中子能谱测量研究]. He Jishu/Nuclear Techniques, 2024, 47(9): 090402. DOI:10.11889/j.0253-3219.2024.hjs.47.090402
    2. Zhang, Y., Zhong, G., Huang, L. et al. Study on the contribution matrix for EAST radial neutron camera system. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114602

    Other cited types(0)

Catalog

    Article views (112) PDF downloads (217) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return