Citation: | Qianglin HU, Wen HU. A classical relativistic hydrodynamical model for strong EM wave-spin plasma interaction[J]. Plasma Science and Technology, 2022, 24(3): 035001. DOI: 10.1088/2058-6272/ac3985 |
Based on the covariant Lagrangian function and Euler–Lagrange equation, a set of classical fluid equations for strong EM wave-spin plasma interaction is derived. Analysis shows that the relativistic effects may affect the interaction processes by three factors: the relativistic factor, the time component of four-spin, and the velocity-field coupling. This set of equations can be used to discuss the collective spin effects of relativistic electrons in classical regime, such as astrophysics, high-energy laser-plasma systems and so on. As an example, the spin induced ponderomotive force in the interaction of strong EM wave and magnetized plasma is investigated. Results show that the time component of four-spin, which approaches to zero in nonrelativistic situations, can increase the spin-ponderomotive force obviously in relativistic situation.
This work was supported by National Natural Science Foundation of China (No. 12065011), and Science and Technology Research Project of Jiangxi Provincial Department of Education (No. GJJ170642).
[1] |
Wu Y T et al 2020 Phys. Rev. Appl.
13 044064 doi: 10.1103/PhysRevApplied.13.044064
|
[2] |
An X Y et al 2019 Phys. Plasmas
26 123106 doi: 10.1063/1.5118710
|
[3] |
Sahu B, Choudhury S and Sinha A 2015 Phys. Plasmas
22 022304 doi: 10.1063/1.4907658
|
[4] |
Brodin G, Marklund M and Manfredi G 2008 Phys. Rev. Lett.
100 175001 doi: 10.1103/PhysRevLett.100.175001
|
[5] |
Marklund M and Brodin G 2007 Phys. Rev. Lett.
98 025001 doi: 10.1103/PhysRevLett.98.025001
|
[6] |
Brodin G, Misra A P and Marklund M 2010 Phys. Rev. Lett.
105 105004 doi: 10.1103/PhysRevLett.105.105004
|
[7] |
Brodin G and Marklund M 2007 New J. Phys.
9 277 doi: 10.1088/1367-2630/9/8/277
|
[8] |
Misra A P 2007 Phys. Plasmas
14 064501 doi: 10.1063/1.2737765
|
[9] |
Marklund M, Eliasson B and Shukla P K 2007 Phys. Rev. E
76 067401 doi: 10.1103/PhysRevE.76.067401
|
[10] |
Misra A P and Shukla P K 2008 Phys. Plasmas
15 052105 doi: 10.1063/1.2913265
|
[11] |
Hafez M G et al 2020 AIP Adv.
10 065234 doi: 10.1063/5.0011086
|
[12] |
Hafez M G 2020 Astrophys. Space Sci.
365 78 doi: 10.1007/s10509-020-03791-9
|
[13] |
Hafez M G 2019 IEEE Trans. Plasma Sci.
47 5314 doi: 10.1109/TPS.2019.2949254
|
[14] |
Alam M S et al 2018 Phys. Plasmas
25 072904 doi: 10.1063/1.5037788
|
[15] |
Hafez M G et al 2017 Plasma Sci. Technol.
19 015002 doi: 10.1088/1009-0630/19/1/015002
|
[16] |
Hafez M G, Talukder M R and Hossain Ali M 2016 Pramana
87 70 doi: 10.1007/s12043-016-1275-x
|
[17] |
Melrose D B and Mushtaq A 2011 Phys. Rev. E
83 056404 doi: 10.1103/PhysRevE.83.056404
|
[18] |
Asenjo F A et al 2012 New J. Phys.
14 073042 doi: 10.1088/1367-2630/14/7/073042
|
[19] |
Morandi O et al 2014 Phys. Rev. E
90 013103 doi: 10.1103/PhysRevE.90.013103
|
[20] |
Asenjo F A et al 2011 Phys. Plasmas
18 012107 doi: 10.1063/1.3533448
|
[21] |
Hakim R and Heyvaerts J 1978 Phys. Rev. A
18 1250 doi: 10.1103/PhysRevA.18.1250
|
[22] |
Sivak H D 1985 Ann. Phys.
159 351 doi: 10.1016/0003-4916(85)90117-4
|
[23] |
Kowalenko V, Frankel N E and Hines K C 1985 Phys. Rep.
126 109 doi: 10.1016/0370-1573(85)90097-3
|
[24] |
Hu Q L et al 2020 Phys. Lett. A
384 126261 doi: 10.1016/j.physleta.2020.126261
|
[25] |
Stefan M et al 2011 Phys. Rev. E
83 036410 doi: 10.1103/PhysRevE.83.036410
|
[26] |
Jackson J D 1999 Classical Electrodynamics3rd ednNew YorkWiley 555
|
[27] |
Fontana A Q 2011 Lat. Am. J. Phys. Educ.
5 406
|
[1] | Shaohua SUN, Bing SUN, Zhonglin YU, Qiuying WANG, Yuanyuan WANG, Jinglin LIU. An efficient process for decomposing perfluorinated compounds by reactive species during microwave discharge in liquid[J]. Plasma Science and Technology, 2025, 27(1): 015502. DOI: 10.1088/2058-6272/ad8f0c |
[2] | Yikang JIA, Tianhui LI, Rui ZHANG, Pengyu ZHAO, Zifeng WANG, Min CHEN, Li GUO, Dingxin LIU. Different bactericidal abilities of plasma-activated saline with various reactive species prepared by surface plasma-activated air and plasma jet combinations[J]. Plasma Science and Technology, 2024, 26(1): 015502. DOI: 10.1088/2058-6272/ad0c1f |
[3] | Shilin SONG, Yuyue HUANG, Yansheng DU, Sisi XIAO, Song HAN, Kun HU, Huihui ZHANG, Huijuan WANG, Chundu WU, Qiong A. Oxidation of ciprofloxacin by the synergistic effect of DBD plasma and persulfate: reactive species and influencing factors analysis[J]. Plasma Science and Technology, 2023, 25(2): 025505. DOI: 10.1088/2058-6272/ac8dd4 |
[4] | Yuhai LI, Qingshun BAI, Yuheng GUAN, Hao LIU, Peng ZHANG, Buerlike BATELIBIEKE, Rongqi SHEN, Lihua LU, Xiaodong YUAN, Xinxiang MIAO, Wei HAN, Caizhen YAO. The mechanism study of low-pressure air plasma cleaning on large-aperture optical surface unraveled by experiment and reactive molecular dynamics simulation[J]. Plasma Science and Technology, 2022, 24(6): 064012. DOI: 10.1088/2058-6272/ac69b6 |
[5] | Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938 |
[6] | Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4 |
[7] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[8] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[9] | Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503 |
[10] | FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582. |
1. | Liu, G., Chen, C., Xia, Y. et al. Numerical study on the effect of shielding gas on atmospheric pressure plasma jet interacting with target surface. Physica Scripta, 2025, 100(4): 045609. DOI:10.1088/1402-4896/adc0ca |
2. | Xu, J., He, Q., Zhang, X. et al. Investigation into the role of Si and SiC phases in RB-SiC ceramics surface modified ultra-precision grinding. Materials Science in Semiconductor Processing, 2024. DOI:10.1016/j.mssp.2024.108786 |
3. | Jia, P., Wan, W., Zhang, L. et al. Numerical simulation on the behavior of a negative streamer encountered with a cloud of positive ions in atmospheric pressure plasma jet. AIP Advances, 2023, 13(6): 065005. DOI:10.1063/5.0155359 |
4. | Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7 |
5. | Cui, X., Xu, Z., Zhou, Y. et al. Deposition of superhydrophobic film on cylindrical ceramic with atmospheric pressure plasma jet. Surface and Coatings Technology, 2022. DOI:10.1016/j.surfcoat.2022.129066 |
6. | Boudjadar, A., Bouanaka, F., Rebiaï, S. Physical phenomena of a cold plasma jet model at atmospheric pressure. Physica Scripta, 2022, 97(12): 125609. DOI:10.1088/1402-4896/aca2fb |