Citation: | Yuhai LI, Qingshun BAI, Yuheng GUAN, Hao LIU, Peng ZHANG, Buerlike BATELIBIEKE, Rongqi SHEN, Lihua LU, Xiaodong YUAN, Xinxiang MIAO, Wei HAN, Caizhen YAO. The mechanism study of low-pressure air plasma cleaning on large-aperture optical surface unraveled by experiment and reactive molecular dynamics simulation[J]. Plasma Science and Technology, 2022, 24(6): 064012. DOI: 10.1088/2058-6272/ac69b6 |
Low-pressure air plasma cleaning is an effective method for removing organic contaminants on large-aperture optical components in situ in the inertial confinement fusion facility. Chemical reactions play a significant role in plasma cleaning, which is a complex process involving abundant bond cleavage and species generation. In this work, experiments and reactive molecular dynamics simulations were carried out to unravel the reaction mechanism between the benchmark organic contaminants of dibutyl phthalate and air plasma. The optical emission spectroscopy was used to study the overall evolution behaviors of excited molecular species and radical signals from air plasma as a reference to simulations. Detailed reaction pathways were revealed and characterized, and specific intermediate radicals and products were analyzed during experiments and simulation. The reactive species in the air plasma, such as O, HO2 and O3 radicals, played a crucial role in cleaving organic molecular structures. Together, our findings provide an atomic-level understanding of complex reaction processes of low-pressure air plasma cleaning mechanisms and are essential for its application in industrial plasma cleaning.
This work was supported by the Joint Funds of National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF) (No. U2030109) and National Natural Science Foundation of China (No. 52075129).
[1] |
Lindl J D, McCrory R L and Campbell E M 1992 Phys. Today 45 32 doi: 10.1063/1.881318
|
[2] |
Baisden P A et al 2016 Fusion Sci. Technol. 69 295 doi: 10.13182/FST15-143
|
[3] |
Bai Q S et al 2016 J. Mech. Eng. 52 145(in Chinese) doi: 10.3901/JME.2016.19.145
|
[4] |
Yang L et al 2015 Opt. Eng. 54 126101 doi: 10.1117/1.OE.54.12.126101
|
[5] |
Ye Y Y et al 2012 Optik 123 1056 doi: 10.1016/j.ijleo.2011.07.030
|
[6] |
Yadav P K et al 2021 Appl. Opt. 60 89 doi: 10.1364/AO.400508
|
[7] |
Sherman R, Hirt D and Vane R 1994 J. Vac. Sci. Technol. A 12 1876 doi: 10.1116/1.579021
|
[8] |
Cuxart M G et al 2016 Appl. Surf. Sci. 362 448 doi: 10.1016/j.apsusc.2015.11.117
|
[9] |
Litnovsky A et al 2019 Nucl. Fusion 59 066029 doi: 10.1088/1741-4326/ab1446
|
[10] |
Peng J et al 2018 Fusion Eng. Des. 128 107 doi: 10.1016/j.fusengdes.2018.01.061
|
[11] |
Pellegrin E et al 2014 J. Synchrotron Radiat. 21 300 doi: 10.1107/S1600577513032402
|
[12] |
Elg D T et al 2016 J. Vac. Sci. Technol. A 34 021305 doi: 10.1116/1.4942456
|
[13] |
Tae H S et al 1995 J. Vac. Sci. Technol. B 13 908 doi: 10.1116/1.588204
|
[14] |
Ben Yaala M et al 2019 Nucl. Fusion 59 096027 doi: 10.1088/1741-4326/ab2d31
|
[15] |
Meng J B, Xu W J and Song W Q 2008 Appl. Surf. Sci. 254 6826 doi: 10.1016/j.apsusc.2008.04.074
|
[16] |
Wu L et al 2021 J. Microwave Power Electr Energy 55 128
|
[17] |
Zhao G B et al 2004 Ind. Eng. Chem. Res. 43 2315 doi: 10.1021/ie049934c
|
[18] |
Yang S H et al 2020 Plasma Sci. Technol. 22 125401 doi: 10.1088/2058-6272/abb454
|
[19] |
Lv Y et al 2021 Plasma Sci. Technol. 23 055506 doi: 10.1088/2058-6272/abe926
|
[20] |
Zeng J Z et al 2020 Nat. Commun. 11 1 doi: 10.1038/s41467-019-13993-7
|
[21] |
Li Y H et al 2022 Appl. Surf. Sci. 581 152358 doi: 10.1016/j.apsusc.2021.152358
|
[22] |
Huang L et al 2022 J. Sol-Gel Sci. Technol. 101 630 doi: 10.1007/s10971-022-05725-z
|
[23] |
Jitsuno T et al 2010 Laser-Ind. Damage Opt. Mater. 7842 784221
|
[24] |
Howard H P et al 2013 Appl. Opt. 52 1682 doi: 10.1364/AO.52.001682
|
[25] |
Muñoz J, Bravo J A and Calzada M D 2017 Appl. Surf. Sci. 407 72 doi: 10.1016/j.apsusc.2017.02.092
|
[26] |
Van Duin A C T et al 2001 J. Phys. Chem. A 105 9396 doi: 10.1021/jp004368u
|
[27] |
Lu X et al 2016 Phys. Rep. 630 1 doi: 10.1016/j.physrep.2016.03.003
|
[28] |
Coburn J W and Chen M 1980 J. Appl. Phys. 51 3134 doi: 10.1063/1.328060
|
[29] |
Aragón C and Aguilera J A 2008 Spectrochim. Acta B 63 893 doi: 10.1016/j.sab.2008.05.010
|
[30] |
Zhang Z Y et al 2019 Appl. Surf. Sci. 475 143 doi: 10.1016/j.apsusc.2018.12.156
|
[31] |
Jagannath R R et al 2019 Plasma Sources Sci. Technol. 28 01LT02 doi: 10.1088/1361-6595/aaf8d3
|
[32] |
Malyshev M V and Donnelly V M 1999 Phys. Rev. E 60 6016 doi: 10.1103/PhysRevE.60.6016
|
[33] |
Itikawa Y 2009 J. Phys. Chem. Ref. Data 38 1 doi: 10.1063/1.3025886
|
[34] |
Gerhard C and Bosch L T 2018 Vak. Forsch. Prax. 30 32 doi: 10.1002/vipr.201800684
|
[35] |
Bónová L et al 2015 Appl. Surf. Sci. 331 79 doi: 10.1016/j.apsusc.2015.01.030
|
[36] |
Zhou J H et al 2007 Carbon 45 785 doi: 10.1016/j.carbon.2006.11.019
|
[37] |
Wu A D et al 2018 Nucl. Instrum. Meth. A 905 61 doi: 10.1016/j.nima.2018.07.039
|
[38] |
Cal M P and Schluep M 2001 Environ. Prog. 20 151 doi: 10.1002/ep.670200310
|
[39] |
Ratanatawanate C, Macias M and Jang B W L 2005 Ind. Eng. Chem. Res. 44 9868 doi: 10.1021/ie0509645
|
[1] | Weiwei FAN (范伟伟), Bowen ZHENG (郑博文), Jing CAO (曹靖), Shibiao TANG (唐世彪), Qingwei YANG (杨青蔚), Zejie YIN (阴泽杰). Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak[J]. Plasma Science and Technology, 2019, 21(6): 65104-065104. DOI: 10.1088/2058-6272/ab0a77 |
[2] | Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb |
[3] | Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf |
[4] | Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d |
[5] | LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02 |
[6] | Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06 |
[7] | QIAN Jinping (钱金平), GONG Xianzu (龚先祖), WAN Baonian (万宝年), LIU Fukun (刘甫坤), WANG Mao (王茂), XU Handong (徐旵东), HU Chundong (胡纯栋), WANG Liang (王亮), LI Erzhong (李二众), ZENG Long (曾龙), TI Ang (提昂), SHEN Biao (沈飚), LIN Shiyao (林士耀), SHAO Linming (邵林明), ZANG Qing (臧庆), LIU Haiqing (刘海庆), ZHANG Bin (张斌), SUN Youwen (孙有文), XU Guosheng (徐国盛), LIANG Yunfeng (梁云峰), XIAO Bingjia (肖炳甲), HU Liqun (胡立群), LI Jiangang (李建刚), the EAST Team. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST[J]. Plasma Science and Technology, 2016, 18(5): 457-459. DOI: 10.1088/1009-0630/18/5/01 |
[8] | SONG Tianming (宋天明), YANG Jiamin (杨家敏), YANG Dong (杨冬), et al.. Experimental Study of the X-Ray Radiation Source at Approximately Constant Radiation Temperature[J]. Plasma Science and Technology, 2013, 15(11): 1108-1111. DOI: 10.1088/1009-0630/15/11/06 |
[9] | LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08 |
[10] | WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10 |