Advanced Search+
Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
Citation: Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb

Calculating the electron temperature in the lightning channel by continuous spectrum

Funds: This research is supported by National Natural Science Foundation of China (Grant No. 11647150), Young Talents Program of Gansu Province of China (2016) and Scientific Research Program of the Higher Education Institutions of Gansu Province of China (Grant No. 2016A-068).
More Information
  • Received Date: June 08, 2017
  • Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which re?ects the temperature of the luminous channel of the outer corona.
  • [1]
    Zhao X Y et al 2009 Acta Phys. Sin. 58 3243 (in Chinese)
    [2]
    Orville R E and Henderson R W 1984 J. Atmos. Sci. 41 3180
    [3]
    Cen J Y et al 2015 Appl. Phys. Lett. 106 054104
    [4]
    Li X Y et al 2004 Acta Opt. Sin. 24 1051 (in Chinese)
    [5]
    Murphy A B and Farmer A J D 2000 J. Phy. D: Appl. Phys. 25 634
    [6]
    Qiu D R 2002 Atomic Spectral Analysis (Shanghai: Fudan University Press)(in Chinese)
    [7]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [8]
    Gao Q et al 2014 Acta Phys. Sin. 63 125202 (in Chinese)
    [9]
    Hutchinson I H 2002 Principles of Plasma Diagnostics (Cambridge: Cambridge University Press)
    [10]
    Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
    [11]
    Beke? G 1966 Radiation Processes in Plasmas (New York: Wiley)
    [12]
    Wang R Y et al 2014 Acta Phys. Sin. 63 099203 (in Chinese)
    [13]
    Cen J Y et al 2011 Phys. Plasmas 18 113506
    [14]
    Liu Y F et al 2014 Acta Phys. Sin. 63 205205 (in Chinese)
    [15]
    Kondo H 2012 Spectrochim. Acta B: Atomic Spectr. 73 20
    [16]
    Hu H et al 2012 Plasma Sci. Technol. 14 257
    [17]
    Mu Y L et al 2016 J. Atmos. Solar-Terrestr. Phys. 145 98
    [18]
    Cen J Y, Yuan P and Xue S M 2014 Phys. Rev. Lett. 112 035001
  • Related Articles

    [1]Shuichi SATO, Hiromu KAWANA, Tatsushi FUJIMINE, Mikio OHUCHI. Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods[J]. Plasma Science and Technology, 2018, 20(8): 85405-085405. DOI: 10.1088/2058-6272/aabfcd
    [2]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [3]Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
    [4]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [5]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [6]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [7]QIAN Jinping (钱金平), GONG Xianzu (龚先祖), WAN Baonian (万宝年), LIU Fukun (刘甫坤), WANG Mao (王茂), XU Handong (徐旵东), HU Chundong (胡纯栋), WANG Liang (王亮), LI Erzhong (李二众), ZENG Long (曾龙), TI Ang (提昂), SHEN Biao (沈飚), LIN Shiyao (林士耀), SHAO Linming (邵林明), ZANG Qing (臧庆), LIU Haiqing (刘海庆), ZHANG Bin (张斌), SUN Youwen (孙有文), XU Guosheng (徐国盛), LIANG Yunfeng (梁云峰), XIAO Bingjia (肖炳甲), HU Liqun (胡立群), LI Jiangang (李建刚), the EAST Team. Integrated Operating Scenario to Achieve 100-Second, High Electron Temperature Discharge on EAST[J]. Plasma Science and Technology, 2016, 18(5): 457-459. DOI: 10.1088/1009-0630/18/5/01
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10
    [10]LIU Qiuyan, LI Hong, CHEN Zhipeng, XIE Jinlin, LIU Wandong. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas[J]. Plasma Science and Technology, 2011, 13(4): 451-457.
  • Cited by

    Periodical cited type(5)

    1. Fu, C., Dong, Y., Li, Y. et al. Kinetic simulations of low-pressure inductively coupled plasma: an implicit electromagnetic PIC/MCC model with the ADI-FDTD method. Journal of Physics D: Applied Physics, 2024, 57(13): 135201. DOI:10.1088/1361-6463/ad1729
    2. Jiang, W., Wei, L., Yang, X. et al. Influence of matching network and frequency on the effective quality factor and performance of a miniature radio frequency ion thruster. Journal of Applied Physics, 2023, 134(3): 033301. DOI:10.1063/5.0147744
    3. Fayazi, H., Lashak, A.B., Pahlavani, M.R.A. Numerical and Experimental Investigation of the Effects of Dimensional Parameters on Carbon-Nanotube-Coated Copper Plasma Limiter. IEEE Transactions on Plasma Science, 2022, 50(5): 1246-1254. DOI:10.1109/TPS.2022.3163200
    4. Li, F., Luo, H., Du, J. et al. Pressure Sensor Based on Direct Current Discharge Plasma | [基于直流辉光放电等离子体的气体压力传感器]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36(15): 3163-3171. DOI:10.19595/j.cnki.1000-6753.tces.201611
    5. Hao, Z., Hua, Y., Song, J. et al. Effects of aspect ratio on electron loss mechanisms and plasma uniformity in cylindrical inductively coupled plasma. Physics of Plasmas, 2020, 27(4): 043502. DOI:10.1063/1.5143099

    Other cited types(0)

Catalog

    Article views (271) PDF downloads (482) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return