Advanced Search+
Kaibang WU, Lai WEI, Zhengxiong WANG. Analysis of anomalous transport based on radial fractional diffusion equation[J]. Plasma Science and Technology, 2022, 24(4): 045101. DOI: 10.1088/2058-6272/ac41bd
Citation: Kaibang WU, Lai WEI, Zhengxiong WANG. Analysis of anomalous transport based on radial fractional diffusion equation[J]. Plasma Science and Technology, 2022, 24(4): 045101. DOI: 10.1088/2058-6272/ac41bd

Analysis of anomalous transport based on radial fractional diffusion equation

More Information
  • Author Bio:

    Zhengxiong WANG, E-mail: zxwang@dlut.edu.cn

  • Received Date: August 07, 2021
  • Revised Date: November 28, 2021
  • Accepted Date: December 08, 2021
  • Available Online: December 15, 2023
  • Published Date: April 05, 2022
  • Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations. It is shown that for fractional transport models, hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients (FDCs) are radially dependent or not. When a radially dependent FDC Dα(r) < 1 is imposed, compared with the case under Dα(r) = 1.0, it is observed that the position of the peak of the density profile is closer to the core. Further, it is found that when FDCs at the positions of source injections increase, the peak values of density profiles decrease. The non-local effect becomes significant as the order of fractional derivative α → 1 and causes the uphill transport. However, as α → 2, the fractional diffusion model returns to the standard model governed by Fick's law.

  • The authors thank Dr Patrick Diamond for his comments on this work. This work is supported by the National MCF Energy R & D Program of China (No. 2019YFE03090300), National Natural Science Foundation of China (No. 11925501), and Fundamental Research Funds for the Central Universities (No. DUT21GJ204).

  • [1]
    Callen J D and Kissick M W 1997 Plasma Phys. Control. Fusion 39 B173 doi: 10.1088/0741-3335/39/12B/014
    [2]
    Gentle K W et al 1995 Phys. Plasmas 2 2292 doi: 10.1063/1.871252
    [3]
    del-Castillo-Negrete D, Carreras B A and Lynch V E 2004 Phys. Plasmas 11 3854 doi: 10.1063/1.1767097
    [4]
    Carreras B A, Lynch V E and Zaslavsky G M 2001 Phys. Plasmas 8 5096 doi: 10.1063/1.1416180
    [5]
    del-Castillo-Negrete D, Carreras B A and Lynch V E 2005 Phys. Rev. Lett. 94 065003 doi: 10.1103/PhysRevLett.94.065003
    [6]
    Bovet A et al 2014 Nucl. Fusion 54 104009 doi: 10.1088/0029-5515/54/10/104009
    [7]
    Furno I et al 2016 Plasma Phys. Control. Fusion 58 014023 doi: 10.1088/0741-3335/58/1/014023
    [8]
    Luce T C, Petty C C and de Haas J C M 1992 Phys. Rev. Lett. 68 52 doi: 10.1103/PhysRevLett.68.52
    [9]
    Petty C C and Luce T C 1994 Nucl. Fusion 34 121 doi: 10.1088/0029-5515/34/1/I09
    [10]
    Mantica P et al 2000 Phys. Rev. Lett. 85 4534 doi: 10.1103/PhysRevLett.85.4534
    [11]
    Ding S Y et al 2014 Plasma Sci. Technol. 16 826 doi: 10.1088/1009-0630/16/9/04
    [12]
    Song S D et al 2012 Nucl. Fusion 52 033006 doi: 10.1088/0029-5515/52/3/033006
    [13]
    Baiocchi B et al 2015 Nucl. Fusion 55 123001 doi: 10.1088/0029-5515/55/12/123001
    [14]
    Baldzuhn J et al 2018 Plasma Phys. Control. Fusion 60 035006 doi: 10.1088/1361-6587/aaa184
    [15]
    Du H R et al 2017 Phys. Plasmas 24 122501 doi: 10.1063/1.5000125
    [16]
    Du H R et al 2020 Phys. Plasmas 27 012502 doi: 10.1063/1.5126662
    [17]
    Li J C, Dong J Q and Liu S F 2020 Plasma Sci. Technol. 22 055101 doi: 10.1088/2058-6272/ab62e4
    [18]
    Zhong W L et al 2016 Phys. Rev. Lett. 117 045001 doi: 10.1103/PhysRevLett.117.045001
    [19]
    Ida K et al 2009 Phys. Plasmas 16 056111 doi: 10.1063/1.3111097
    [20]
    Han M K et al 2021 Nucl. Fusion 61 046010 doi: 10.1088/1741-4326/abcdb8
    [21]
    Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Amsterdam: Gordon and Breach Science Publishers)
    [22]
    Podlubny I 1999 Fractional Differential Equations (San Diego: Academic)
    [23]
    Li C P and Zeng F H 2015 Numerical Methods for Fractional Calculus (New York: CRC Press)
    [24]
    del-Castillo-Negrete D 2006 Phys. Plasmas 13 082308 doi: 10.1063/1.2336114
    [25]
    Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167 doi: 10.1063/1.1704269
    [26]
    van Milligen B P, Sánchez R and Carreras B A 2004 Phys. Plasmas 11 2272 doi: 10.1063/1.1701893
    [27]
    van Milligen B P, Carreras B A and Sánchez R 2004 Phys. Plasmas 11 3787 doi: 10.1063/1.1763915
    [28]
    Sánchez R, van Milligen B P and Carreras B A 2005 Phys. Plasmas 12 056105 doi: 10.1063/1.1869499
    [29]
    Kullberg A et al 2013 Phys. Rev. E 87 052115 doi: 10.1103/PhysRevE.87.052115
    [30]
    Kullberg A B 2014 Non-local fractional diffusion and transport in magnetized plasmas PhD Thesis University of California, Los Angeles, USA
    [31]
    Kullberg A, Morales G J and Maggs J E 2014 Phys. Plasmas 21 032310 doi: 10.1063/1.4868862
    [32]
    Maggs J E and Morales G J 2019 Phys. Rev. E 99 013307 doi: 10.1103/PhysRevE.99.013307
    [33]
    Maggs J E and Morales G J 2019 Phys. Plasmas 26 052505 doi: 10.1063/1.5089461
    [34]
    Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications)
    [35]
    Synakowski E J et al 1990 Phys. Rev. Lett. 65 2255 doi: 10.1103/PhysRevLett.65.2255
  • Related Articles

    [1]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [2]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [3]YANG Hong(杨洪), SONG Yuntao(宋云涛), WANG Zhongwei(王忠伟). Thermal and Hydraulic Analysis of the ITER Upper Vertical Stabilization Coil[J]. Plasma Science and Technology, 2014, 16(7): 706-711. DOI: 10.1088/1009-0630/16/7/13
    [4]P. K. KARMAKAR, B. BORAH. Inertia-Centric Stability Analysis of a Planar Uniform Dust Molecular Cloud with Weak Neutral-Charged Dust Frictional Coupling[J]. Plasma Science and Technology, 2014, 16(5): 433-447. DOI: 10.1088/1009-0630/16/5/01
    [5]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [6]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
    [7]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [8]LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12
    [9]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
    [10]CHEN Peng, FU Peng, SONG Zhiquan. Design of Balanced Reactor Welded with Water-Cooled Aluminum Busbars[J]. Plasma Science and Technology, 2011, 13(2): 242-245.
  • Cited by

    Periodical cited type(6)

    1. Shi, Y., Song, X., Guo, D. et al. Strategy and experimental progress of the EXL-50U spherical torus in support of the EHL-2 project. Plasma Science and Technology, 2025, 27(2): 024003. DOI:10.1088/2058-6272/ad9e8f
    2. Qi, H., Wang, J. Study on the electron dynamics of MoS2under ultraviolet femtosecond laser irradiation. Procedia Computer Science, 2025. DOI:10.1016/j.procir.2025.01.006
    3. Qi, H., Wang, J. Study on the electron dynamics of MoS2under ultraviolet femtosecond laser irradiation. Procedia CIRP, 2025. DOI:10.1016/j.procir.2025.01.006
    4. Mou, J., Li, Y., Li, Y. et al. Electron density measurement by the three boundary channels of HCOOH laser interferometer on the HL-3 tokamak. Plasma Science and Technology, 2024, 26(3): 034013. DOI:10.1088/2058-6272/ad127a
    5. Chen, J., Xiao, D., Xiong, Y. et al. Design and analysis of kA stepped pulse current generation scheme | [kA 级双阶梯脉冲电源方案设计与分析]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024, 36(2): 025012. DOI:10.11884/HPLPB202436.230243
    6. Zhang, N., Liu, H.Q., Xie, J.X. et al. Development of a dual HCN laser interferometer on a small tokamak device. Journal of Instrumentation, 2023, 18(10): C10008. DOI:10.1088/1748-0221/18/10/C10008

    Other cited types(0)

Catalog

    Figures(6)  /  Tables(1)

    Article views (95) PDF downloads (80) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return