Citation: | Ruilin CUI, Tianliang ZHANG, Qian YUAN, Feng HE, Ruoyu HAN, Jiting OUYANG. Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core[J]. Plasma Science and Technology, 2023, 25(1): 015403. DOI: 10.1088/2058-6272/ac8510 |
In this work, we investigated the discharge characteristics and heating mechanisms of argon helicon plasma in different wave coupled modes with and without blue core. Spatially resolved spectroscopy and emission intensity of argon atom and ion lines were measured via local optical emission spectroscopy, and electron density was measured experimentally by an RF-compensated Langmuir probe. The relation between the emission intensity and the electron density was obtained and the wavenumbers of helicon and 'Trivelpiece-Gould' (TG) waves were calculated by solving the dispersion relation in wave modes. The results show that at least two distinct wave coupled modes appear in argon helicon plasma at increasing RF power, i.e. blue core (or BC) mode with a significant bright core of blue lights and a normal wave (NW) mode without blue core. The emission intensity of atom line 750.5 nm (IArI750.5nm) is related to the electron density and tends to be saturated in wave coupled modes due to the neutral depletion, while the intensity of ion line 480.6 nm (IArII480.6nm) is a function of the electron density and temperature, and increases dramatically as the RF power is increased. Theoretical analysis shows that TG waves are strongly damped at the plasma edge in NW and/or BC modes, while helicon waves are the dominant mechanism of power deposition or central heating of electrons in both modes. The formation of BC column mainly depends on the enhanced central electron heating by helicon waves rather than TG waves since the excitation of TG waves would be suppressed in this special anti-resonance region.
This work was supported in part by National Natural Science Foundation of China (No. 11975047).
[1] |
Sarra-Bournet C, Charles C and Boswell R 2011 Surf. Coat. Technol. 205 3939 doi: 10.1016/j.surfcoat.2011.02.022
|
[2] |
Perry A J, Vender D and Boswell R W 1991 J. Vac. Sci. Technol. B 9 310 doi: 10.1116/1.585611
|
[3] |
Takahashi K et al 2014 Plasma Sources Sci. Technol. 23 044004 doi: 10.1088/0963-0252/23/4/044004
|
[4] |
Chen F F 2015 Plasma Sources Sci. Technol. 24 014001 doi: 10.1088/0963-0252/24/1/014001
|
[5] |
Sharma N et al 2018 Rev. Sci. Instrum. 89 083508 doi: 10.1063/1.5030624
|
[6] |
Caneses J F, Blackwell B D and Piotrowicz P 2017 Phys. Plasmas 24 113513 doi: 10.1063/1.5000848
|
[7] |
Scime E E et al 2013 Phys. Plasmas 20 032103 doi: 10.1063/1.4794351
|
[8] |
Windisch T et al 2010 Plasma Sources Sci. Technol. 19 055002 doi: 10.1088/0963-0252/19/5/055002
|
[9] |
Kline J L et al 1999 Phys. Plasmas 6 4767 doi: 10.1063/1.873764
|
[10] |
Kline J L and Scime E E 2003 Phys. Plasmas 10 135 doi: 10.1063/1.1528182
|
[11] |
Beers C J et al 2019 Fusion Eng. Des. 138 282 doi: 10.1016/j.fusengdes.2018.11.056
|
[12] |
Squire J P et al 2006 Thin Solid Films 506–507 579 doi: 10.1016/j.tsf.2005.08.061
|
[13] |
Cui R L et al 2020 Plasma Sources Sci. Technol. 29 015018 doi: 10.1088/1361-6595/ab56dc
|
[14] |
Zhang T L et al 2021 Phys. Plasmas 28 073505 doi: 10.1063/5.0050180
|
[15] |
Wang H H et al 2019 Plasma Sci. Technol. 21 074009 doi: 10.1088/2058-6272/ab175b
|
[16] |
Rayner J P and Cheetham A D 1999 Plasma Sources Sci. Technol. 8 79 doi: 10.1088/0963-0252/8/1/010
|
[17] |
Franck C M et al 2005 Plasma Sources Sci. Technol. 14 226 doi: 10.1088/0963-0252/14/2/003
|
[18] |
Shinohara S and Mizokoshi H 2006 Rev. Sci. Instrum. 77 036108 doi: 10.1063/1.2173940
|
[19] |
Ellingboe A R and Boswell R W 1996 Phys. Plasmas 3 2797 doi: 10.1063/1.871713
|
[20] |
Keiter P A, Scime E E and Balkey M M 1997 Phys. Plasmas 4 2741 doi: 10.1063/1.872142
|
[21] |
Thakur S C et al 2014 Plasma Sources Sci. Technol. 23 044006 doi: 10.1088/0963-0252/23/4/044006
|
[22] |
Corr C S, Boswell R W 2007 Phys. Plasmas 14 122503 doi: 10.1063/1.2802080
|
[23] |
Tysk S M et al 2004 Phys. Plasmas 11 878 doi: 10.1063/1.1642656
|
[24] |
Franck C M, Grulke O and Klinger T 2003 Phys. Plasmas 10 323 doi: 10.1063/1.1528903
|
[25] |
Celik M 2011 Spectrochim. Acta B 66 149 doi: 10.1016/j.sab.2011.01.003
|
[26] |
Shamrai K P and Taranov V B 1995 Phys. Lett. A 204 139 doi: 10.1016/0375-9601(95)00435-6
|
[27] |
Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474 doi: 10.1088/0963-0252/5/3/015
|
[28] |
Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499 doi: 10.1088/0963-0252/7/4/008
|
[29] |
Chen F F and Blackwell D D 1999 Phys. Rev. Lett. 82 2677 doi: 10.1103/PhysRevLett.82.2677
|
[30] |
Cho S and Lieberman M A 2003 Phys. Plasmas 10 882 doi: 10.1063/1.1542613
|
[31] |
Tarey R D, Sahu B B and Ganguli A 2012 Phys. Plasmas 19 073520 doi: 10.1063/1.4739779
|
[32] |
Sakawa Y, Takino T and Shoji T 1999 Phys. Plasmas 6 4759 doi: 10.1063/1.873763
|
[33] |
Sakawa Y et al 2003 Phys. Rev. Lett. 90 105001 doi: 10.1103/PhysRevLett.90.105001
|
[34] |
Arnush D 2000 Phys. Plasmas 7 3042 doi: 10.1063/1.874157
|
[35] |
Piotrowicz P A et al 2018 Phys. Plasmas 25 052101 doi: 10.1063/1.5023924
|
[36] |
Carter M D et al 2002 Phys. Plasmas 9 5097 doi: 10.1063/1.1519539
|
[37] |
Carter M D et al 2002 Phys. Plasmas 9 5097 doi: 10.1063/1.1519539
|
[38] |
Akhiezer A I, Mikhailenko V S and Stepanov K N 1998 Phys. Lett. A 245 117 doi: 10.1016/S0375-9601(98)00437-X
|
[39] |
Lorenz B et al 2005 Plasma Sources Sci. Technol. 14 623 doi: 10.1088/0963-0252/14/3/027
|
[40] |
Kline J L et al 2002 Phys. Rev. Lett. 88 195002 doi: 10.1103/PhysRevLett.88.195002
|
[41] |
Isayama S et al 2019 Phys. Plasmas 26 023517 doi: 10.1063/1.5063506
|
[42] |
Isayama S et al 2019 Phys. Plasmas 26 053504 doi: 10.1063/1.5093920
|
[43] |
Clarenbach B, Krämer M and Lorenz B 2007 J. Phys. D: Appl. Phys. 40 5117 doi: 10.1088/0022-3727/40/17/018
|
[44] |
Celik M 2011 Spectrochim. Acta B 66 149 doi: 10.1016/j.sab.2011.01.003
|
[45] |
Khoshhal M, Habibi M and Boswell R 2020 AIP Adv. 10 065312 doi: 10.1063/1.5140346
|
[46] |
Miljak D G and Chen F F 1998 Plasma Sources Sci. Technol. 7 537 doi: 10.1088/0963-0252/7/4/011
|
[47] |
Sun B, Huo W G and Ding Z F 2012 Rev. Sci. Instrum. 83 085112 doi: 10.1063/1.4746995
|
[48] |
Blackwell D D and Chen F F 1997 Plasma Sources Sci. Technol. 6 569 doi: 10.1088/0963-0252/6/4/015
|
[49] |
Magee R M et al 2013 Phys. Plasmas 20 123511 doi: 10.1063/1.4849376
|
[50] |
Clarenbach B et al 2003 Plasma Sources Sci. Technol. 12 345 doi: 10.1088/0963-0252/12/3/307
|
[51] |
Takahashi K, Takao Y and Ando A 2016 Appl. Phys. Lett. 108 074103 doi: 10.1063/1.4942469
|
[52] |
Takahashi K, Takao Y and Ando A 2016 Appl. Phys. Lett. 109 194101 doi: 10.1063/1.4967193
|
[53] |
Scime E et al 2007 Phys. Plasmas 14 043505 doi: 10.1063/1.2716687
|
[54] |
Boffard J B et al 2007 At. Data Nucl. Data Tables 93 831 doi: 10.1016/j.adt.2007.06.004
|
[55] |
Boswell R W and Giles M J 1976 Phys. Rev. Lett. 36 1142 doi: 10.1103/PhysRevLett.36.1142
|
[56] |
Barada K K et al 2013 Phys. Plasmas 20 042119 doi: 10.1063/1.4802823
|
[57] |
Caneses J F and Blackwell B D 2016 Plasma Sources Sci. Technol. 25 055027 doi: 10.1088/0963-0252/25/5/055027
|
[58] |
Kim S H and Hwang Y S 2008 Plasma Phys. Control. Fusion 50 035007 doi: 10.1088/0741-3335/50/3/035007
|
[59] |
Kaeppelin V, Carrère M and Faure J B 2001 Rev. Sci. Instrum. 72 4377 doi: 10.1063/1.1419228
|
[60] |
Arnush D and Chen F F 1998 Phys. Plasmas 5 1239 doi: 10.1063/1.872782
|
[61] |
Chi K K, Sheridan T E and Boswell R W 1999 Plasma Sources Sci. Technol. 8 421 doi: 10.1088/0963-0252/8/3/312
|
[62] |
Ellingboe A R et al 1995 Phys. Plasmas 2 1807 doi: 10.1063/1.871334
|
[63] |
Shamrai K P and Shinohara S 2001 Phys. Plasmas 8 4659 doi: 10.1063/1.1394779
|
[64] |
Takahashi K, Chiba A and Ando A 2014 Plasma Sources Sci. Technol. 23 064005 doi: 10.1088/0963-0252/23/6/064005
|
[65] |
Takahashi K, Takao Y and Ando A 2019 Plasma Sources Sci. Technol. 28 085014 doi: 10.1088/1361-6595/ab3100
|
[66] |
Virko V F et al 2004 Phys. Plasmas 11 3888 doi: 10.1063/1.1764830
|
[67] |
Du D et al 2019 J. Phys. Soc. Jpn. 88 054501 doi: 10.7566/JPSJ.88.054501
|
[68] |
Aguirre E M et al 2020 Phys. Plasmas 27 123501 doi: 10.1063/5.0025523
|
[1] | Maria YOUNUS, N U REHMAN, M SHAFIQ, M NAEEM, M ZAKA-UL-ISLAM, M ZAKAULLAH. Evolution of plasma parameters in an Ar–N2/ He inductive plasma source with magnetic pole enhancement[J]. Plasma Science and Technology, 2017, 19(2): 25402-025402. DOI: 10.1088/2058-6272/19/2/025402 |
[2] | NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09 |
[3] | A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06 |
[4] | ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08 |
[5] | Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09 |
[6] | LIU Xuan(刘璇), GE Jie(葛婕), YANG Yi(杨轶), SONG Yixu(宋亦旭), REN Tianling(任天令). Feature Scale Simulation of PECVD of SiO 2 in SiH 4 /N 2 O Mixture[J]. Plasma Science and Technology, 2014, 16(4): 385-389. DOI: 10.1088/1009-0630/16/4/15 |
[7] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[8] | XIN Yu(信裕), DING Hongbin(丁洪斌). Ab initio Calculations of Electron-Impact Excitation Cross Sections for N 2[J]. Plasma Science and Technology, 2014, 16(2): 104-109. DOI: 10.1088/1009-0630/16/2/04 |
[9] | DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11 |
[10] | YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07 |
1. | Chen, S., Li, Z., Gao, Y. et al. Preparation of few-layer graphene by annealing Ni film with low carbon content deposited by direct current magnetron sputtering. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113421 | |
2. | Li, Q., Qi, Y., Cheng, W. et al. Combined effects of electron doping and surface polarity on the ferromagnetism in Gd implanted polar ZnO wafers. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2022.167319 | |
3. | Li, Q., Ying, M. Ion implantation induced d0 ferromagnetism in oxide semiconductors. Defect-Induced Magnetism in Oxide Semiconductors, 2023. DOI:10.1016/B978-0-323-90907-5.00019-1 | |
4. | Zhang, H., Liu, Y., Chen, Q. Research Progress on Optoelectronic Thin Films Deposited by HiPIMS: Discharge Characteristics and Parameter Adjustment | [HiPIMS 沉积光电薄膜研究进展:放电特性和参数调控]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 93-104. DOI:10.11933/j.issn.1007-9289.20211231004 | |
5. | Bai, X., Cai, Q., Zhang, X. Research Progress of Crystalline Thin Films by High Power Impulse Magnetron Sputtering at a Low Temperature | [高能脉冲磁控溅射低温制备晶态薄膜的研究进展]. Zhongguo Biaomian Gongcheng/China Surface Engineering, 2022, 35(5): 105-115. DOI:10.11933/j.issn.1007-9289.20211213002 | |
6. | Li, Q., Zhang, M., Yan, W. et al. Effects of electron doping on the d0 magnetism in N-implanted ZnO and ZnAlO films. Ceramics International, 2022, 48(14): 19831-19836. DOI:10.1016/j.ceramint.2022.03.258 | |
7. | Egbo, K.O., Chibueze, T.C., Raji, A.T. et al. Effects of acceptor doping and oxygen stoichiometry on the properties of sputter-deposited p-type rocksalt NixZn1-xO (0.3≤x≤1.0) alloys. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.164224 |