Advanced Search+
Bowen JIA, Jianwen WU, Shu LI, Hao WU, Xiangjun PENG, Jian DAI, Ruang CHEN. Magneto-hydrodynamic simulation study of direct current multi-contact circuit breaker for equalizing breaking arc[J]. Plasma Science and Technology, 2023, 25(2): 025506. DOI: 10.1088/2058-6272/ac910f
Citation: Bowen JIA, Jianwen WU, Shu LI, Hao WU, Xiangjun PENG, Jian DAI, Ruang CHEN. Magneto-hydrodynamic simulation study of direct current multi-contact circuit breaker for equalizing breaking arc[J]. Plasma Science and Technology, 2023, 25(2): 025506. DOI: 10.1088/2058-6272/ac910f

Magneto-hydrodynamic simulation study of direct current multi-contact circuit breaker for equalizing breaking arc

More Information
  • Corresponding author:

    Jianwen WU, E-mail: wujianwen@buaa.edu.cn

  • Received Date: May 15, 2022
  • Revised Date: September 07, 2022
  • Accepted Date: September 08, 2022
  • Available Online: December 05, 2023
  • Published Date: January 05, 2023
  • This work is based on a direct current (DC) natural current commutation topology, which uses load-carrying branch contacts carrying rated current and multiple sets of series arcing branch contacts in parallel to achieve circuit breaking. The proposed topology can meet the new requirements of higher voltage DC switches in aviation, aerospace, energy and other fields. First, a magneto-hydrodynamic arc model is built using COMSOL Multiphysics, and the different arc breaking characteristics of the arcing branch contacts in different gas environments are simulated. Then, a voltage uniformity coefficient is used to measure the voltage sharing effect in the process of dynamic interruption. In order to solve the dispersion of arcing contact action, a structural control method is adopted to improve the voltage uniformity coefficient. The uniform voltage distribution can improve the breaking capacity and electrical life of the series connection structure.

  • This work is supported by National Natural Science Foundation of China (No. 51977002). This manuscript is recommended by the Third International Symposium on Insulation and Discharge Computation for Power Equipment (IDCOMPU2021). The physical parameters of the discharge gas were determined by GPLAS (www.plasma-data.net/index).

  • [1]
    Shang Y X et al 2020 IEEE Trans. Ind. Electron. 67 2991 doi: 10.1109/TIE.2019.2905834
    [2]
    Zhang X Y et al 2019 IEEE Trans. Ind. Electron. 66 7653 doi: 10.1109/TIE.2018.2886787
    [3]
    Gouda O E, Awaad M I and Afifi Z E 2021 Electr. Power Syst. Res. 199 107442 doi: 10.1016/j.epsr.2021.107442
    [4]
    Jia B W et al 2020 IEEE Access 8 186540 doi: 10.1109/ACCESS.2020.3030660
    [5]
    Belda N A, Smeets P P P and Nijman R M 2020 IEEE Trans. Power Deliv. 35 2762 doi: 10.1109/TPWRD.2020.2979934
    [6]
    Sima W et al 2019 IEEE Trans. Ind. Electron. 66 6979 doi: 10.1109/TIE.2018.2878115
    [7]
    Qu L et al 2020 Electr. Power Syst. Res. 179 106075 doi: 10.1016/j.epsr.2019.106075
    [8]
    Wen W J et al 2018 IEEE Trans. Ind. Appl. 54 5456 doi: 10.1109/TIA.2018.2791404
    [9]
    Li P Y et al 2021 Int. J. Electr. Power Energy Syst. 131 107019 doi: 10.1016/j.ijepes.2021.107019
    [10]
    Wu R H et al 2019 Plasma Sci. Technol. 21 044002 doi: 10.1088/2058-6272/aafbc7
    [11]
    Guo Q L et al 2017 IEEJ Trans. Electr. Electron. Eng. 12 465 doi: 10.1002/tee.22401
    [12]
    Wu Y F et al 2019 IEEE Trans. Ind. Electron. 66 6055 doi: 10.1109/TIE.2018.2870387
    [13]
    Lindmayer M 2018 IEEE Trans. Plasma Sci. 46 444 doi: 10.1109/TPS.2017.2788450
    [14]
    Chao X et al 2014 IEEE Trans. Plasma Sci. 42 2722 doi: 10.1109/TPS.2014.2340432
    [15]
    Niu C P et al 2016 Plasma Sci. Technol. 18 241 doi: 10.1088/1009-0630/18/3/05
    [16]
    Ma R G et al 2013 IEEE Trans. Plasma Sci. 41 2551 doi: 10.1109/TPS.2013.2273832
    [17]
    Karetta F and Lindmayer M 1998 IEEE Trans Compon. Packag. Manuf. Technol. Part A 21 96 doi: 10.1109/95.679038
  • Related Articles

    [1]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [2]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [3]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [4]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [5]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [6]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [7]YIN Mingli (阴明利), TIAN Canxin (田灿鑫), WANG Zesong (王泽松), FU Dejun (付德君). Influences of Bias Voltage and Target Current on Structure, Microhardness and Friction Coefficient of Multilayered TiAlN/ CrN Coatings Synthesized by Cathodic Arc Plasma Deposition[J]. Plasma Science and Technology, 2013, 15(6): 582-585. DOI: 10.1088/1009-0630/15/6/17
    [8]K. YAMAUCHI, K. SHIMADA, T. TERAKADO, M. MATSUKAWA, R. COLETTI, A. LAMPASI, E. GAIO, A. COLETT, L. NOVELLO. Detailed Analysis of the Transient Voltage in a JT-60SA PF Coil Circuit[J]. Plasma Science and Technology, 2013, 15(2): 148-151. DOI: 10.1088/1009-0630/15/2/14
    [9]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
    [10]Hiroshi Naitou, Yusuke Yamada, Kenji Kajiwara, Wei-li Lee, Shinji Tokuda, Masatoshi Yagi. Global and Kinetic MHD Simulation by the Gpic-MHD Code[J]. Plasma Science and Technology, 2011, 13(5): 528-534.

Catalog

    Figures(10)  /  Tables(1)

    Article views (19) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return