Advanced Search+
Yingbo YU, Zhongjian KANG. Improvement of circuit oscillation generated by underwater high voltage pulse discharges based on pulse power thyristor[J]. Plasma Science and Technology, 2023, 25(3): 035505. DOI: 10.1088/2058-6272/ac9575
Citation: Yingbo YU, Zhongjian KANG. Improvement of circuit oscillation generated by underwater high voltage pulse discharges based on pulse power thyristor[J]. Plasma Science and Technology, 2023, 25(3): 035505. DOI: 10.1088/2058-6272/ac9575

Improvement of circuit oscillation generated by underwater high voltage pulse discharges based on pulse power thyristor

More Information
  • Corresponding author:

    Zhongjian KANG, E-mail: kangzjzh@163.com

  • Received Date: August 07, 2022
  • Revised Date: September 22, 2022
  • Accepted Date: September 26, 2022
  • Available Online: December 06, 2023
  • Published Date: January 18, 2023
  • High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by 77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction.

  • This work was financially supported by the National Science and Technology Major Project (No. 2016ZX05034004).

  • [1]
    Deng Q et al 2015 J. Nat. Gas Sci. Eng. 27 719 doi: 10.1016/j.jngse.2015.09.015
    [2]
    Zhang B et al 2018 J. Nat. Gas Sci. Eng. 57 155 doi: 10.1016/j.jngse.2018.07.004
    [3]
    Zhao Y L, Zhang L H and Shan B C 2018 J. Nat. Gas Sci. Eng. 59 67 doi: 10.1016/j.jngse.2018.08.018
    [4]
    Li J et al 2018 J. Pet. Sci. Eng. 160 510 doi: 10.1016/j.petrol.2017.10.071
    [5]
    Xue Y et al 2021 J. Pet. Sci. Eng. 206 109018 doi: 10.1016/j.petrol.2021.109018
    [6]
    Liu L Y et al 2018 J. Pet. Sci. Eng. 164 91 doi: 10.1016/j.petrol.2018.01.049
    [7]
    Tang Z Q et al 2016 Fuel 186 571 doi: 10.1016/j.fuel.2016.08.103
    [8]
    Chen J et al 2022 Fuel 310 122264 doi: 10.1016/j.fuel.2021.122264
    [9]
    Yan F Z et al 2016 Powder Technol. 298 50 doi: 10.1016/j.powtec.2016.05.023
    [10]
    Ni Z et al 2021 Fuel 306 121621 doi: 10.1016/j.fuel.2021.121621
    [11]
    Zhang X L, Lin B Q and Shen J 2022 Fuel 310 122431 doi: 10.1016/j.fuel.2021.122431
    [12]
    Wang J et al 2021 J. Energy Resour. Technol. 143 053005 doi: 10.1115/1.4049584
    [13]
    Ren F et al 2019 J. Nat. Gas Sci. Eng. 66 255 doi: 10.1016/j.jngse.2019.04.005
    [14]
    Zhao L J 2022 Arab. J. Geosci. 15 222 doi: 10.1007/s12517-021-09373-5
    [15]
    Fei R et al 2018 J. Nat. Gas Sci. Eng. 57 1 doi: 10.1016/j.jngse.2018.06.034
    [16]
    Chen W et al 2012 J. Pet. Sci. Eng. 88–89 67 doi: 10.1016/j.petrol.2012.01.009
    [17]
    Zheng S C et al 2020 J. Nat. Gas Sci. Eng. 80 103403 doi: 10.1016/j.jngse.2020.103403
    [18]
    Li L J et al 2019 IEEE Trans. Plasma Sci. 47 4237 doi: 10.1109/TPS.2019.2933660
    [19]
    Beverly R E Ⅲ and Campbell R N 1996 Rev. Sci. Instrum. 67 1593 doi: 10.1063/1.1146901
    [20]
    Cai X J et al 2010 Overvolted breakdown and recovery of gas spark gap Proc. of 2010 IEEE Int. Power Modulator and High Voltage Conf. (Atlanta) (IEEE) p 541
    [21]
    Pecastaing L et al 2006 IEEE Trans. Plasma Sci. 34 1822 doi: 10.1109/TPS.2006.883346
    [22]
    Lyubutin S K et al 2001 Instrum. Exp. Tech. 44 644 doi: 10.1023/A:1012397523972
    [23]
    Li S M et al 2009 Chin. J. Opt. Appl. Opt. 2 263
    [24]
    Wu J W et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 2164 doi: 10.1109/TDEI.2017.006254
    [25]
    Makdessi M et al 2015 Microelectron. Reliab. 55 2012 doi: 10.1016/j.microrel.2015.06.099
    [26]
    Emadi A 2004 IEEE Trans. Ind. Electron. 51 661 doi: 10.1109/TIE.2004.825339
    [27]
    Wang L et al 2019 IEEE Access 7 12241 doi: 10.1109/ACCESS.2019.2891122
    [28]
    Dorf R C and Bishop R H 2011 Modern Control Systems 12th edn (London: Pearson)
    [29]
    Erickson R W and Maksimovic D 2001 Fundamentals of Power Electronics2nd edn (New York: Springer) p 295
    [30]
    Zhao Y et al 2022 J. Appl. Phys. 131 083301 doi: 10.1063/5.0079162
    [31]
    Namihira T et al 2007 IEEE Trans. Plasma Sci. 35 614 doi: 10.1109/TPS.2007.896965
    [32]
    Oshita D et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1273 doi: 10.1109/TDEI.2013.6571444
    [33]
    Li J S et al 2019 Energies 12 2128 doi: 10.3390/en12112128
    [34]
    Chen X Y, Lu C and Xiong Z L 2021 J. Phys. Conf. Ser. 2030 012017 doi: 10.1088/1742-6596/2030/1/012017
    [35]
    Qiao L et al 2021 AIP Adv. 11 125221 doi: 10.1063/5.0074563
    [36]
    Han Z et al 2022 J. Korean Phys. Soc. 80 299 doi: 10.1007/s40042-021-00366-x
    [37]
    Mobarrez M, Kashani M G and Bhattacharya S 2016 IEEE Trans. Ind. Appl. 52 4108 doi: 10.1109/TIA.2016.2565458
  • Related Articles

    [1]Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0
    [2]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [3]Wei LIU (刘伟), Chundong HU (胡纯栋), Sheng LIU (刘胜), Shihua SONG (宋士花), Jinxin WANG (汪金新), Yan WANG (王艳), Yuanzhe ZHAO (赵远哲), LizhenLIANG (梁立振). Development of data acquisition and over-current protection systems for a suppressor-grid current with a neutral-beam ion source[J]. Plasma Science and Technology, 2017, 19(12): 125605. DOI: 10.1088/2058-6272/aa8cc1
    [4]Yujun KE (柯于俊), Xinfeng SUN (孙新锋), Xuekang CHEN (陈学康), Licheng TIAN (田立成), Tianping ZHANG (张天平), Maofan ZHENG (郑茂繁), Yanhui JIA (贾艳辉), Haocheng JIANG (江豪成). Analysis of the primary experimental results on a 5 cm diameter ECR ion thruster[J]. Plasma Science and Technology, 2017, 19(9): 95503-095503. DOI: 10.1088/2058-6272/aa6d4c
    [5]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [6]WEI Jianglong (韦江龙), XIE Yahong (谢亚红), LIANG Lizhen (梁立振), GU Yuming (顾玉明), YI Wei (邑伟), LI Jun (李军), HU Chundong (胡纯栋), XIE Yuanlai (谢远来), JIANG Caichao (蒋才超), TAO Ling (陶玲), SHENG Peng (盛鹏), XU Yongjian (许永建). Design of the Prototype Negative Ion Source for Neutral Beam Injector at ASIPP[J]. Plasma Science and Technology, 2016, 18(9): 954-959. DOI: 10.1088/1009-0630/18/9/13
    [7]CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]HU Chundong (胡纯栋) for the NBI team. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2012, 14(10): 871-873. DOI: 10.1088/1009-0630/14/10/03
    [10]LI Jibo(李吉波), DING Siye(丁斯晔), WU Bin(吴斌), HU Chundong(胡纯栋). Simulations of Neutral Beam Ion Ripple Loss on EAST[J]. Plasma Science and Technology, 2012, 14(1): 78-82. DOI: 10.1088/1009-0630/14/1/17

Catalog

    Figures(16)

    Article views (54) PDF downloads (19) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return