Citation: | Beibei ZHU, Jian LIU, Jiawei ZHANG, Aiqing ZHU, Yifa TANG. Adaptive energy-preserving algorithms for guiding center system[J]. Plasma Science and Technology, 2023, 25(4): 045102. DOI: 10.1088/2058-6272/ac9c4a |
We develop two types of adaptive energy preserving algorithms based on the averaged vector field for the guiding center dynamics, which plays a key role in magnetized plasmas. The adaptive scheme is applied to the Gauss Legendre's quadrature rules and time stepsize respectively to overcome the energy drift problem in traditional energy-preserving algorithms. These new adaptive algorithms are second order, and their algebraic order is carefully studied. Numerical results show that the global energy errors are bounded to the machine precision over long time using these adaptive algorithms without massive extra computation cost.
This research is supported by National Natural Science Foundation of China (Nos. 11901564, 11775222 and 12171466) and Geo-Algorithmic Plasma Simulator (GAPS) Project.
[1] |
Feng K 1995 Collected Works of Feng Kang
Vol. 2 (Beijing:
National Defence Industry Press)
|
[2] |
Hairer E, Lubich C and Wanner G 2002 Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations (New York: Springer)
|
[3] |
Sanz-Serna J M Calvo M P 1994 Numerical Hamiltonian Problems (London: Chapman and Hall)
|
[4] |
Channell P J and Scovel C 1990 Nonlinearity
3 231 doi: 10.1088/0951-7715/3/2/001
|
[5] |
Forest E and Ruth R D 1990 Phys. D Nonlin. Phenom.
43 105 doi: 10.1016/0167-2789(90)90019-L
|
[6] |
Tang Y F, Pérez-García V and Vázquez L 1997 Appl. Math. Comput.
82 17 doi: 10.1016/S0096-3003(96)00019-7
|
[7] |
Brugnano L Iavernaro F 2016 Line Integral Methods for Conservative Problems (Boca Raton, FL: Chapman and Hall/CRC)
|
[8] |
Celledoni E et al 2012 J. Comput. Phys.
231 6770 doi: 10.1016/j.jcp.2012.06.022
|
[9] |
McLachlan R I and Quispel G R W 2014 Disc. Contin. Dyn. Syst.
34 1099 doi: 10.3934/dcds.2014.34.1099
|
[10] |
Quispel G R W and McLaren D I 2008 J. Phys. A Math. Theor.
41 045206 doi: 10.1088/1751-8113/41/4/045206
|
[11] |
Brugnano L, Iavernaro F and Zhang R L 2020 J. Comput. Appl. Math.
380 112994 doi: 10.1016/j.cam.2020.112994
|
[12] |
Li H C and Wang Y S 2016 Appl. Math. Comput.
291 207 doi: 10.1016/j.amc.2016.06.044
|
[13] |
Li T and Wang B 2019 Appl. Math. Comput.
361 703 doi: 10.1016/j.cam.2019.04.013
|
[14] |
Zhang R L et al 2019 Numer. Algor.
81 1521 doi: 10.1007/s11075-019-00739-1
|
[15] |
Zhu B B, Tang Y F and Liu J 2022 Phys. Plasmas
29 032501 doi: 10.1063/5.0075321
|
[16] |
Edoh A K 2022 J. Comput. Phys.
454 110971 doi: 10.1016/j.jcp.2022.110971
|
[17] |
An R, Zhang C and Li Y 2021 J. Comput. Appl. Math.
386 113236 doi: 10.1016/j.cam.2020.113236
|
[18] |
Deng D W and Liang D 2020 Appl. Numer. Math.
151 172 doi: 10.1016/j.apnum.2019.12.024
|
[19] |
Littlejohn R G 1983 J. Plasma Phys.
29 111 doi: 10.1017/S002237780000060X
|
[20] |
Huang H T and Wang L 2020 Plasma Sci. Technol.
22 105101 doi: 10.1088/2058-6272/aba58c
|
[21] |
Qin H and Guan X Y 2008 Phys. Rev. Lett.
100 035006 doi: 10.1103/PhysRevLett.100.035006
|
[22] |
Ye L et al 2015 Plasma Sci. Technol.
17 280 doi: 10.1088/1009-0630/17/4/04
|
[23] |
Zhang R L et al 2014 Phys. Plasmas
21 032504 doi: 10.1063/1.4867669
|
[24] |
He Y et al 2017 Phys. Lett. A
381 568 doi: 10.1016/j.physleta.2016.12.031
|
[25] |
Wang Y L, Yuan F and Liu J 2020 Plasma Sci. Technol.
22 065001 doi: 10.1088/2058-6272/ab770e
|
[26] |
Zhang R L et al 2016 Commu. Comput. Phys.
19 1397 doi: 10.4208/cicp.scpde14.33s
|
[27] |
Zhang R L et al 2016 Phys. Rev. E
94 013205 doi: 10.1103/PhysRevE.94.013205
|
[28] |
Qin H, Guan X Y and Tang W M 2009 Phys. Plasmas
16 042510 doi: 10.1063/1.3099055
|
[29] |
Ellison C L et al 2018 Phys. Plasmas
25 052502 doi: 10.1063/1.5022277
|
[30] |
Burby J W and Ellison C L 2017 Phys. Plasmas
24 110703 doi: 10.1063/1.5004429
|
[1] | Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7 |
[2] | Cailong FU (付彩龙), Qi WANG (王奇), Hongbin DING (丁洪斌). Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application[J]. Plasma Science and Technology, 2018, 20(8): 85501-085501. DOI: 10.1088/2058-6272/aab661 |
[3] | Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d |
[4] | Hualei ZHANG (张华磊), Liming HE (何立明), Jinlu YU (于锦禄), Wentao QI (祁文涛), Gaocheng CHEN (陈高成). Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame[J]. Plasma Science and Technology, 2018, 20(2): 24001-024001. DOI: 10.1088/2058-6272/aa9850 |
[5] | Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c |
[6] | R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10 |
[7] | GAO Ling (高岭), ZHANG Bailing (张百灵), LI Yiwen (李益文), FAN Hao (樊昊), DUAN Chengduo (段成铎), WANG Yutian (王宇天). Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions[J]. Plasma Science and Technology, 2016, 18(8): 855-859. DOI: 10.1088/1009-0630/18/8/11 |
[8] | ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13 |
[9] | ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04 |
[10] | WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734. |