Citation: | Ping XU, Yi YU, Haiyang ZHOU. Fabrication of a single-crystal diamond neutron detector and its application in 14.1 MeV neutron detection in deuterium–tritium fusion experiments[J]. Plasma Science and Technology, 2023, 25(7): 075101. DOI: 10.1088/2058-6272/acb48a |
A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium–tritium (D-T) fusion neutrons. The size of its diamond film is 4.5 mm × 4.5 mm × 500 μm. This film is sandwiched by a flat, strip-patterned gold electrode. The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm−1. This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5 × 105 s–1 cm–2. The pronounced peak with a central energy of 8.28 MeV characterizing the 12C(n,α)9Be reaction in the neutron energy spectrum is experimentally diagnosed, and the energy resolution is better than 1.69%, which is the best result reported so far using a diamond detector. A clear peak with a central energy of 6.52 MeV characterizing the 12C(n,n′)3α reaction is also identified with an energy resolution of better than 7.67%.
The authors thank Dr M. Yin from the Southwestern Institute of Physics for help with MCNP-4C code simulation. This work was supported by National Natural Science Foundation of China (No. 12075241).
[1] |
Shvyd'ko Y et al 2011 Nat. Photonics 5 539 doi: 10.1038/nphoton.2011.197
|
[2] |
Coe S E et al 2000 Diam. Relat. Mater. 9 1762 doi: 10.1016/S0925-9635(00)00294-6
|
[3] |
Bergonzo P et al 2001 Diam. Relat. Mater. 10 631 doi: 10.1016/S0925-9635(00)00554-9
|
[4] |
Grubel G et al 1995 Rev. Sci. Instrum. 66 1687 doi: 10.1063/1.1145883
|
[5] |
Terentyev S et al 2016 Rev. Sci. Instrum. 87 125117 doi: 10.1063/1.4973326
|
[6] |
Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
|
[7] |
Nemtsev G et al 2016 Rev. Sci. Instrum. 87 11D835 doi: 10.1063/1.4962190
|
[8] |
Dankowski J et al 2017 Diam. Relat. Mater. 79 88 doi: 10.1016/j.diamond.2017.08.016
|
[9] |
Obraztsova O et al 2018 IEEE Trans. Nucl. Sci. 65 2380 doi: 10.1109/TNS.2018.2848469
|
[10] |
Kavrigin P et al 2017 EPJ Web Conf. 146 11036 doi: 10.1051/epjconf/201714611036
|
[11] |
Almaviva S et al 2008 J. Appl. Phys. 103 054501 doi: 10.1063/1.2838208
|
[12] |
Cazzaniga C et al 2014 Rev. Sci. Instrum. 85 11E101 doi: 10.1063/1.4885356
|
[13] |
Nemanich R J et al 1988 J. Vac. Sci. Technol. A 6 1783 doi: 10.1116/1.575297
|
[14] |
Finders J M et al 2009 J. Micro/Nanolithogr. MEMS MOEMS 8 011002 doi: 10.1117/1.3079349
|
[15] |
Elevant T et al 1986 Rev. Sci. Instrum. 57 1763 doi: 10.1063/1.1139174
|
[16] |
Pillon M, Angelone M and Krasilniko A V 1996 Radiat. Prot. Dosim. 66 371 doi: 10.1093/oxfordjournals.rpd.a031757
|
[17] |
Kaneko J et al 1999 Rev. Sci. Instrum. 70 1100 doi: 10.1063/1.1149494
|
[18] |
Philip O et al 2017 IEEE Trans. Nucl. Sci. 64 2683 doi: 10.1109/TNS.2017.2742468
|
[19] |
2003 MCNP - a general purpose Monte Carlo N-particle
transport code, v. 5, vol. II User's guide USA: LANL
|
[20] |
Kaneko J H et al 2004 Rev. Sci. Instrum. 75 3581 doi: 10.1063/1.1787918
|
[21] |
Hodgson M et al 2017 Nucl. Instrum. Methods Phys. Res. A 847 1 doi: 10.1016/j.nima.2016.11.006
|
[22] |
Hodgson M et al 2017 Meas. Sci. Technol. 28 105501 doi: 10.1088/1361-6501/aa7f8b
|
[23] |
Angelone M et al 2006 Radiat. Prot. Dosim. 120 345 doi: 10.1093/rpd/nci634
|
[24] |
Kumar A et al 2017 Nucl. Instrum. Method. Phys. Res. A 858 12 doi: 10.1016/j.nima.2017.03.033
|
[25] |
Lee C Y et al 2019 Appl. Rad. Isotopes 152 25 doi: 10.1016/j.apradiso.2019.06.025
|
[26] |
Claps G et al 2018 IEEE Trans. Nucl. Sci. 65 2743 doi: 10.1109/TNS.2018.2871605
|
[27] |
Isberg J et al 2002 Science 297 1670 doi: 10.1126/science.1074374
|
[28] |
Pan L S et al 1993 J. Appl. Phys. 74 1086 doi: 10.1063/1.354957
|
[29] |
ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
|
[1] | Hanlin WANG, Xiaojie WANG, Chao ZHANG, Yunying TANG, Fukun LIU. Investigation of electron cyclotron wave absorption and current drive in CFETR hybrid scenario plasmas[J]. Plasma Science and Technology, 2023, 25(9): 095101. DOI: 10.1088/2058-6272/acc6b6 |
[2] | Defeng KONG, Ge ZHUANG, Tao LAN, Shoubiao ZHANG, Yang YE, Qilong DONG, Chen CHEN, Jie WU, Sen ZHANG, Zhihao ZHAO, Fanwei MENG, Xiaohui ZHANG, Yanqing HUANG, Fei WEN, Pengfei ZI, Lei LI, Guanghai HU, Yuntao SONG. Design and platform testing of the compact torus central fueling device for the EAST tokamak[J]. Plasma Science and Technology, 2023, 25(6): 065601. DOI: 10.1088/2058-6272/acaf61 |
[3] | Yunpeng ZOU (邹云鹏), Minyou YE (叶民友). Alfvén eigenmode stability analysis and energetic particle transport prediction for CFETR hybrid scenario[J]. Plasma Science and Technology, 2019, 21(9): 95104-095104. DOI: 10.1088/2058-6272/ab2110 |
[4] | Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b |
[5] | YU Guanying (余冠英), LIU Xufeng (刘旭峰), LIU Songlin (刘松林). An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR[J]. Plasma Science and Technology, 2016, 18(10): 1038-1043. DOI: 10.1088/1009-0630/18/10/12 |
[6] | GAO Fangfang (高芳芳), ZHANG Xiaokang (张小康), PU Yong (蒲勇), ZHU Qingjun (祝庆军), LIU Songlin (刘松林). Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(8): 865-869. DOI: 10.1088/1009-0630/18/8/13 |
[7] | LI Jia (李佳), ZHANG Xiaokang (张小康), GAO Fangfang (高芳芳), PU Yong (蒲勇). Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR[J]. Plasma Science and Technology, 2016, 18(2): 179-183. DOI: 10.1088/1009-0630/18/2/14 |
[8] | LUO Zhiren (罗志仁), YANG Qingxi (杨庆喜), SONG Yuntao (宋云涛), et al.. Analysis of an Extreme Scenario in the Vacuum Vessel in KTX[J]. Plasma Science and Technology, 2015, 17(6): 510-516. DOI: 10. 1088/1009- 0630/17/6/12 |
[9] | MA Xuebin(马学斌), LIU Songlin(刘松林), LI Jia(李佳), PU Yong(蒲勇), CHEN Xiangcun(陈香存). Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept[J]. Plasma Science and Technology, 2014, 16(4): 390-395. DOI: 10.1088/1009-0630/16/4/16 |
[10] | Mohadeseh MOOSAVI, Abbas GHASEMIZAD, Mohamad Jafar TABATABAEI. Investigation of Fuel Energy Gain for Tritium-Poor Fuels in Fast Ignition Fusion Approach[J]. Plasma Science and Technology, 2013, 15(10): 996-1001. DOI: 10.1088/1009-0630/15/10/07 |