Advanced Search+
Hanyu ZHANG, Lina ZHOU, Yueqiang LIU, Guangzhou HAO, Shuo WANG, Xu YANG, Yutian MIAO, Ping DUAN, Long CHEN. Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks[J]. Plasma Science and Technology, 2024, 26(5): 055101. DOI: 10.1088/2058-6272/ad13e3
Citation: Hanyu ZHANG, Lina ZHOU, Yueqiang LIU, Guangzhou HAO, Shuo WANG, Xu YANG, Yutian MIAO, Ping DUAN, Long CHEN. Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks[J]. Plasma Science and Technology, 2024, 26(5): 055101. DOI: 10.1088/2058-6272/ad13e3

Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad–Shafranov solutions across multiple tokamaks

More Information
  • Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters. A neural network (NN)-based approach is investigated that facilitates such a process. Both multilayer perceptron (MLP)-based NN and convolutional neural network (CNN) models are trained to map the q-profile to the plasma current density J-profile, and vice versa, while satisfying the Grad–Shafranov radial force balance constraint. When the initial target models are trained, using a database of semi-analytically constructed numerical equilibria, an initial CNN with one convolutional layer is found to perform better than an initial MLP model. In particular, a trained initial CNN model can also predict the q- or J-profile for experimental tokamak equilibria. The performance of both initial target models is further improved by fine-tuning the training database, i.e. by adding realistic experimental equilibria with Gaussian noise. The fine-tuned target models, referred to as fine-tuned MLP and fine-tuned CNN, well reproduce the target q- or J-profile across multiple tokamak devices. As an important application, these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers, where the desired input quantity is the safety factor instead of the plasma current density.

  • [1]
    Shafranov V D 1958 Sov. Phys. - JETP 6 545
    [2]
    Lütjens H, Bondeson A and Sauter O 1996 Comput. Phys. Commun. 97 219 doi: 10.1016/0010-4655(96)00046-X
    [3]
    Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526 doi: 10.1038/s41586-019-1116-4
    [4]
    Zheng W et al 2018 Nucl. Fusion 58 056016 doi: 10.1088/1741-4326/aaad17
    [5]
    Dormido-Canto S et al 2013 Nucl. Fusion 53 113001 doi: 10.1088/0029-5515/53/11/113001
    [6]
    Montes K J et al 2019 Nucl. Fusion 59 096015 doi: 10.1088/1741-4326/ab1df4
    [7]
    Pau A et al 2019 Nucl. Fusion 59 106017 doi: 10.1088/1741-4326/ab2ea9
    [8]
    Rea C et al 2019 Nucl. Fusion 59 096016 doi: 10.1088/1741-4326/ab28bf
    [9]
    Fu Y C et al 2020 Phys. Plasmas 27 022501 doi: 10.1063/1.5125581
    [10]
    Zheng W et al 2022 Plasma Sci. Technol. 24 124003 doi: 10.1088/2058-6272/ac9e46
    [11]
    Guo B H et al 2021 Plasma Phys. Control. Fusion 63 025008 doi: 10.1088/1361-6587/abcbab
    [12]
    Piccione A et al 2020 Nucl. Fusion 60 046033 doi: 10.1088/1741-4326/ab7597
    [13]
    Zhu J X et al 2021 Nucl. Fusion 61 026007 doi: 10.1088/1741-4326/abc664
    [14]
    Zhao Y F et al 2022 Plasma Phys. Control. Fusion 64 045010 doi: 10.1088/1361-6587/ac4524
    [15]
    Degrave J et al 2022 Nature 602 414 doi: 10.1038/s41586-021-04301-9
    [16]
    Gaudio P et al 2014 Plasma Phys. Control. Fusion 56 114002 doi: 10.1088/0741-3335/56/11/114002
    [17]
    Li H et al 2021 Plasma Sci. Technol. 23 115102 doi: 10.1088/2058-6272/ac15ec
    [18]
    Citrin J et al 2015 Nucl. Fusion 55 092001 doi: 10.1088/0029-5515/55/9/092001
    [19]
    Meneghini O et al 2017 Nucl. Fusion 57 086034 doi: 10.1088/1741-4326/aa7776
    [20]
    Boyer M D and Chadwick J 2021 Nucl. Fusion 61 046024 doi: 10.1088/1741-4326/abe08b
    [21]
    Dong J L et al 2021 Plasma Sci. Technol. 23 085101 doi: 10.1088/2058-6272/ac0685
    [22]
    Lister J B and Saurenmann H 1991 Nucl. Fusion 31 1291 doi: 10.1088/0029-5515/31/7/005
    [23]
    van Milligen B P, Tribaldos V and Jiménez J A 1995 Phys. Rev. Lett. 75 3594 doi: 10.1103/PhysRevLett.75.3594
    [24]
    Joung S et al 2020 Nucl. Fusion 60 016034 doi: 10.1088/1741-4326/ab555f
    [25]
    Kaltsas D A and Throumoulopoulos G N 2022 Phys. Plasmas 29 022506 doi: 10.1063/5.0073033
    [26]
    Liu Y Q et al 2022 Nucl. Fusion 62 126067 doi: 10.1088/1741-4326/ac9d4c
    [27]
    Wai J T, Boyer M D and Kolemen E 2022 Nucl. Fusion 62 086042 doi: 10.1088/1741-4326/ac77e6
    [28]
    Liu Y Q et al 2020 Plasma Phys. Control. Fusion 62 045001 doi: 10.1088/1361-6587/ab6f56
    [29]
    Snyder P B et al 2004 Nucl. Fusion 44 320 doi: 10.1088/0029-5515/44/2/014
    [30]
    Sauter O, Angioni C and Lin-Liu Y R 1999 Phys. Plasmas 6 2834 doi: 10.1063/1.873240
    [31]
    Yang X et al 2016 Plasma Phys. Control. Fusion 58 114006 doi: 10.1088/0741-3335/58/11/114006
    [32]
    Liu Y Q et al 2017 Phys. Plasmas 24 056111 doi: 10.1063/1.4978884
    [33]
    Xia G L et al 2019 Nucl. Fusion 59 126035 doi: 10.1088/1741-4326/ab415d
    [34]
    Wan B N et al 2014 IEEE Trans. Plasma Sci. 42 495 doi: 10.1109/TPS.2013.2296939
    [35]
    Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
    [36]
    Zhuang G et al 2019 Nucl. Fusion 59 112010 doi: 10.1088/1741-4326/ab0e27
    [37]
    Liu Y Q 2010 Nucl. Fusion 50 095008 doi: 10.1088/0029-5515/50/9/095008
    [38]
    Zhou L N et al 2016 Plasma Phys. Control. Fusion 58 115003 doi: 10.1088/0741-3335/58/11/115003
    [39]
    Zhou L N et al 2021 Plasma Phys. Control. Fusion 63 065007 doi: 10.1088/1361-6587/abf446
    [40]
    Wroblewski D, Jahns G L and Leuer J A 1997 Nucl. Fusion 37 725 doi: 10.1088/0029-5515/37/6/I02
    [41]
    Yoshino R 2003 Nucl. Fusion 43 1771 doi: 10.1088/0029-5515/43/12/021
    [42]
    Pan S J and Yang Q A 2010 IEEE Trans. Knowl. Data Eng. 22 1345 doi: 10.1109/TKDE.2009.191
    [43]
    Zheng W et al 2023 Commun Phys. 6 181 doi: 10.1038/s42005-023-01296-9
  • Related Articles

    [1]Chunxia LIANG (梁春霞), Ning WANG (王宁), Zhengchao DUAN (段正超), Feng HE (何锋), Jiting OUYANG (欧阳吉庭). Experimental investigations of enhanced glow based on a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2019, 21(2): 25401-025401. DOI: 10.1088/2058-6272/aaef49
    [2]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [3]Wenzheng LIU (刘文正), Chuanlong MA (马传龙), Shuai ZHAO (赵帅), Xiaozhong CHEN (陈晓中), Tahan WANG (王踏寒), Luxiang ZHAO (赵潞翔), Zhiyi LI (李治一), Jiangqi NIU (牛江奇), Liying ZHU (祝莉莹), Maolin CHAI (柴茂林). Exploration to generate atmospheric pressure glow discharge plasma in air[J]. Plasma Science and Technology, 2018, 20(3): 35401-035401. DOI: 10.1088/2058-6272/aa9885
    [4]Ling ZHANG (张玲), Guo CHEN (陈果), Zhibing HE (何智兵), Xing AI (艾星), Jinglin HUANG (黄景林), Lei LIU (刘磊), Yongjian TANG (唐永建), Xiaoshan HE (何小珊). Investigation of working pressure on the surface roughness controlling technology of glow discharge polymer films based on the diagnosed plasma[J]. Plasma Science and Technology, 2017, 19(7): 75505-075505. DOI: 10.1088/2058-6272/aa6618
    [5]LIU Wenzheng (刘文正), LEI Xiao (雷晓), ZHAO Qiang (赵强). Study on Glow Discharge Plasma Used in Polyester Surface Modification[J]. Plasma Science and Technology, 2016, 18(1): 35-40. DOI: 10.1088/1009-0630/18/1/07
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]LI Yan(李岩), YAO Mengqi(姚萌奇), LIAO Ruirui(廖瑞瑞), YANG Wu(杨武), GAO Jinzhang(高锦章), REN Jie(任杰). Synthesis of Poly (Butyl Methacrylate/Butyl Acrylate) Highly Absorptive Resin Using Glow Discharge Electrolysis[J]. Plasma Science and Technology, 2014, 16(8): 777-781. DOI: 10.1088/1009-0630/16/8/08
    [8]A. SAEED, A. W. KHAN, M. SHAFIQ, F. JAN, M. ABRAR, M. ZAKA-UL-ISLAM, M. ZAKAULLAH. Investigation of 50 Hz Pulsed DC Nitrogen Plasma with Active Screen Cage by Trace Rare Gas Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2014, 16(4): 324-328. DOI: 10.1088/1009-0630/16/4/05
    [9]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [10]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10

Catalog

    Article views (71) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return