Advanced Search+
Zhongma WANG, Chaoyi SHI, Xiuqing ZHANG, Wenwu LU, Sheng ZHANG, Xianhe GAO, Tao XU, Xingxing SHAO, Liansheng HUANG. Analysis and verification of electrodynamic force, thermal stress and current sharing for CRAFT converter structure design[J]. Plasma Science and Technology, 2024, 26(8): 085601. DOI: 10.1088/2058-6272/ad3c6c
Citation: Zhongma WANG, Chaoyi SHI, Xiuqing ZHANG, Wenwu LU, Sheng ZHANG, Xianhe GAO, Tao XU, Xingxing SHAO, Liansheng HUANG. Analysis and verification of electrodynamic force, thermal stress and current sharing for CRAFT converter structure design[J]. Plasma Science and Technology, 2024, 26(8): 085601. DOI: 10.1088/2058-6272/ad3c6c

Analysis and verification of electrodynamic force, thermal stress and current sharing for CRAFT converter structure design

More Information
  • Author Bio:

    Xiuqing ZHANG: xqzhang@ipp.ac.cn

  • Corresponding author:

    Xiuqing ZHANG, xqzhang@ipp.ac.cn

  • Received Date: July 28, 2023
  • Revised Date: April 06, 2024
  • Accepted Date: April 07, 2024
  • Available Online: April 08, 2024
  • Published Date: July 01, 2024
  • In the design realm of fusion power supplies, structural components play a pivotal role in ensuring the safety of fusion devices. To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology (CRAFT), meticulous analysis of the converter’s dynamic impact is carefully performed based on the worst fault current (400 kA), firstly. Subsequently, the thermal stress analysis based on the maximum allowable steady-state temperature is finished, and the equivalent thermal stress, thermal deformation, maximum shear stress of a single bridge arm and the whole converter are studied. Furthermore, a simple research method involving the current-sharing characteristics of a bridge arm with multi-thyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS. The results show that the current-sharing characteristics are excellent. Finally, the structural design has been meticulously tailored to meet the established requirements.

  • The authors express their gratitude to the Institute of Plasma Physics Chinese Academy of Sciences (ASIPP), for their invaluable assistance in the design process of the fusion power converter. This work was supported by the Talent Research Fund of Hefei University (No. 21-22RC09), and National Natural Science Foundation of China (No. U22A20225).

  • [1]
    Kembleton R et al 2020 IEEE Trans. Plasma Sci. 48 1703 doi: 10.1109/TPS.2020.2967889
    [2]
    Li D et al 2024 J Phys D: Appl Phys. 57 075201 doi: 10.1088/1361-6463/ad0ac2
    [3]
    Cui L et al 2017 Nucl. Fusion 57 116030 doi: 10.1088/1741-4326/aa7efe
    [4]
    He J Y et al 2021 IEEE Trans. Appl. Supercon. 31 6800405
    [5]
    Xue J J et al 2022 IEEE Trans. Appl. Supercon. 32 7700904
    [6]
    Chen J L, Jia G Z and Xiang N 2021 J. Fusion Energy 40 1 doi: 10.1007/s10894-021-00292-7
    [7]
    Mondino P L et al 2001 Fusion Eng. Des. 55 325 doi: 10.1016/S0920-3796(01)00199-5
    [8]
    Suh Y and Kim C 2012 IEEE Trans. Power Electr. 27 1212 doi: 10.1109/TPEL.2011.2167762
    [9]
    Wang Z M et al 2020 Plasma Sci. Technol. 22 045604 doi: 10.1088/2058-6272/ab7472
    [10]
    Shagniev O B et al 2019 Fusion Eng. Des. 146 2421 doi: 10.1016/j.fusengdes.2019.04.008
    [11]
    Boglietti A et al 2016 IEEE Trans. Ind. Electron. 63 2713 doi: 10.1109/TIE.2015.2511170
    [12]
    Cha S L, Lee Y and Kim J K 2017 Nucl. Eng. Des. 322 412 doi: 10.1016/j.nucengdes.2017.07.017
    [13]
    Kovacevic-Badstuebner I et al 2021 IEEE Trans. Electromagn. Compat. 63 82 doi: 10.1109/TEMC.2020.2986933
    [14]
    Park J et al 2015 IEEE Trans. Electromagn. Compat. 57 743 doi: 10.1109/TEMC.2015.2424259
    [15]
    Yang Y et al 2018 Fusion Eng. Des. 132 37 doi: 10.1016/j.fusengdes.2018.04.061
    [16]
    D’Amico G et al 2016 IEEE Trans. Appl. Supercon. 26 4200505
    [17]
    Wang Z M et al 2023 Fusion Eng. Des. 190 113520 doi: 10.1016/j.fusengdes.2023.113520
    [18]
    Fukumoto Y, Tomita M and Iwakuma M 2017 IEEE Trans. Appl. Supercon. 27 5500605
    [19]
    Wang P, Song Z Q and Li C 2016 IEEE Trans. Plasma Sci. 44 1525 doi: 10.1109/TPS.2016.2565639
    [20]
    Wang P et al 2023 J. Fusion Energy 34 116
    [21]
    Wang S S et al 2021 IEEE Trans. Plasma Sci. 49 2979 doi: 10.1109/TPS.2021.3098555
    [22]
    Abarzadeh M et al 2021 IEEE Trans. Ind. Appl. 57 3164 doi: 10.1109/TIA.2020.3019778
    [23]
    Makki L et al 2022 IEEE Trans. Power Electr. 37 10585 doi: 10.1109/TPEL.2022.3160278
    [24]
    Li S N et al 2014 IEEE Trans. Power Electr. 29 3616 doi: 10.1109/TPEL.2013.2279258
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [4]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [5]Ding LU (陆丁), Ziliang LI (李子良), Haibo SANG (桑海波), Baisong XIE (谢柏松). Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35002-035002. DOI: 10.1088/2058-6272/19/3/035002
    [6]Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001
    [7]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04

Catalog

    Figures(11)  /  Tables(2)

    Article views (38) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return