Citation: | Yunfeng LIANG, Huasheng XIE, Yuejiang SHI, Xiang GU, Xinchen JIANG, Lili DONG, Xueyun WANG, Danke YANG, Wenjun LIU, Tiantian SUN, Yumin WANG, Zhi LI, Jianqing CAI, Xianming SONG, Muzhi TAN, Guang YANG, Hanyue ZHAO, Jiaqi DONG, Yueng-Kay Martin PENG, Shaodong SONG, Zhengyuan CHEN, Yingying LI, Bing LIU, Di LUO, Yuanming YANG, Minsheng LIU, the EHL-2 Team. Overview of the physics design of the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024001. DOI: 10.1088/2058-6272/ad981a |
ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p-11B fusion, establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperature, and provide a design basis for subsequent experiments to test and realize the p-11B fusion burning plasma. Based on 0-dimensional (0-D) system design and 1.5-dimensional transport modelling analyses, the main target parameters of EHL-2 have been basically determined, including the plasma major radius, R0, of 1.05 m, the aspect ratio, A, of 1.85, the maximum central toroidal magnetic field strength, B0, of 3 T, and the plasma toroidal current, Ip, of 3 MA. The main heating system will be the neutral beam injection at a total power of 17 MW. In addition, 6 MW of electron cyclotron resonance heating will serve as the main means of local current drive and MHD instabilities control. The physics design of EHL-2 is focused on addressing three main operating scenarios, i.e., (1) high ion temperature scenario, (2) high-performance steady-state scenario and (3) high triple product scenario. Each scenario will integrate solutions to different important issues, including equilibrium configuration, heating and current drive, confinement and transport, MHD instability, p-11B fusion reaction, plasma-wall interactions, etc. Beyond that, there are several unique and significant challenges to address, including
● establish a plasma with extremely high core ion temperature (Ti,0 > 30 keV), and ensure a large ion-to-electron temperature ratio (Ti,0/Te,0 > 2), and a boron concentration of 10%‒15% at the plasma core;
● realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current. This is because the volt-seconds that the central solenoid of the ST can provide are very limited;
● achieve divertor heat and particle fluxes control including complete detachment under high P/R (> 20 MW/m) at relatively low electron densities.
This overview will introduce the advanced progress in the physics design of EHL-2.
This work was supported by ENN Group and ENN Energy Research Institute. The authors would like to express their gratitude for the contributions of the ENN fusion team and collaborators in supporting this endeavor. We are thankful to Laizhong CAI, Vincent CHAN, Jiakang CHEN, Huarong DU, Guoyong FU, Xiang GAO, Zhe GAO, Yong GUO, Baolong HAO, Guangzhou HAO, Xiwei HU, Youjun HU, Tuong HOANG, Yong-Seok HWANG, Akio ISHIDA, Mitsuru KIKUCHI, Haozhe KONG, Chunyan LI, Ding LI, Guangsheng LI, Hang LI, Zhanhong LIN, Dequan LIU, Lianliang MA, Takashi MAEKAWA, Wanjiang PAN, Jinping QIAN, Hong RAN, Hang SI, Xiao SONG, Youwen SUN, Yi TAN, Carlos Hidalgo VERA , Quanyun WANG, Xiaogang WANG, Xueren WANG, Howard WILSON, Clement PO-Ching WONG, Bin WU, Xiangfeng WU, Xiaohe WU, Tianyang XIA, Guosheng XU, Lei XUE, Longwen YAN, Gang YIN, Minyou YE, Qingquan YU, Xianmei ZHANG, and Haishan ZHOU for their constructive comments and discussions on this work.
[1] |
JET Team 1992 Nucl. Fusion 32 187 doi: 10.1088/0029-5515/32/2/I01
|
[2] |
Keilhacker M et al 1999 Nucl. Fusion 39 209 doi: 10.1088/0029-5515/39/2/306
|
[3] |
Maggi C F et al 2024 Nucl. Fusion 64 112012 doi: 10.1088/1741-4326/ad3e16
|
[4] |
Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
|
[5] |
Chapman I T, Cowley S C and Wilson H R 2024 Philos. Trans. Roy. Soc. A 382 20230416 doi: 10.1098/rsta.2023.0416
|
[6] |
Creely A J et al 2020 J. Plasma Phys. 86 865860502 doi: 10.1017/S0022377820001257
|
[7] |
Geser F A and Valente M 2020 Radiat. Phys. Chem. 167 108224 doi: 10.1016/j.radphyschem.2019.03.028
|
[8] |
Nevins W M 1998 J. Fusion Energy 17 25 doi: 10.1023/A:1022513215080
|
[9] |
Putvinski S V, Ryutov D D and Yushmanov P N 2019 Nucl. Fusion 59 076018 doi: 10.1088/1741-4326/ab1a60
|
[10] |
Ochs I E and Fisch N J 2024 Phys. Plasmas 31 012503 doi: 10.1063/5.0184945
|
[11] |
Margarone D et al 2022 Appl. Sci. 12 1444 doi: 10.3390/app12031444
|
[12] |
Stave S et al 2011 Phys. Lett. B 696 26 doi: 10.1016/j.physletb.2010.12.015
|
[13] |
Magee R M et al 2023 Nat. Commun. 14 955 doi: 10.1038/s41467-023-36655-1
|
[14] |
Cai J Q et al 2022 Fusion Sci. Technol. 78 149 doi: 10.1080/15361055.2021.1964309
|
[15] |
Xie H S and Wang X Y 2024 Plasma Phys. Control. Fusion 66 065009 doi: 10.1088/1361-6587/ad3f4b
|
[16] |
JET Team 1999 Nucl. Fusion 39 1875 doi: 10.1088/0029-5515/39/11Y/329
|
[17] |
Kishimoto H et al 2005 Nucl. Fusion 45 986 doi: 10.1088/0029-5515/45/8/026
|
[18] |
Hawryluk R J et al 1998 Phys. Plasmas 5 1577 doi: 10.1063/1.872825
|
[19] |
Peng Y K M and Strickler D J 1986 Nucl. Fusion 26 769 doi: 10.1088/0029-5515/26/6/005
|
[20] |
Gryaznevich M et al 1998 Phys. Rev. Lett. 80 3972 doi: 10.1103/PhysRevLett.80.3972
|
[21] |
Sykes A et al 2001 Phys. Plasmas 8 2101 doi: 10.1063/1.1352595
|
[22] |
Harrison J R et al 2024 Nucl. Fusion 64 112017 doi: 10.1088/1741-4326/ad6011
|
[23] |
Ono M et al 2001 Nucl. Fusion 41 1435 doi: 10.1088/0029-5515/41/10/311
|
[24] |
Menard J E et al 2017 Nucl. Fusion 57 102006 doi: 10.1088/1741-4326/aa600a
|
[25] |
Gusev V K et al 2009 Nucl. Fusion 49 104021 doi: 10.1088/0029-5515/49/10/104021
|
[26] |
McNamara S A M et al 2023 Nucl. Fusion 63 054002 doi: 10.1088/1741-4326/acbec8
|
[27] |
Wood J et al 2023 J. Instrum. 18 C03019 doi: 10.1088/1748-0221/18/03/C03019
|
[28] |
Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
|
[29] |
Theiler C et al 2017 Nucl. Fusion 57 072008 doi: 10.1088/1741-4326/aa5fb7
|
[30] |
Li Z et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9da2
|
[31] |
Wang F et al 2021 Chin. Phys. Lett. 38 055201 doi: 10.1088/0256-307X/38/5/055201
|
[32] |
Hu Y J et al 2023 Phys. Plasmas 30 092507 doi: 10.1063/5.0158503
|
[33] |
Becker H W, Rolfs C and Trautvetter H P 1987 Z. Phys. A Atomic Nuclei 327 341 doi: 10.1007/BF01284459
|
[34] |
Nevins W M and Swain R 2000 Nucl. Fusion 40 865 doi: 10.1088/0029-5515/40/4/310
|
[35] |
Li Z et al 2024 Laser Particle Beams 42 e5 doi: 10.1017/lpb.2024.2
|
[36] |
Suzuki S et al 1998 Plasma Phys. Control. Fusion 40 2097 doi: 10.1088/0741-3335/40/12/009
|
[37] |
Tamano T 1995 Phys. Plasmas 2 2321 doi: 10.1063/1.871256
|
[38] |
Wu M Y et al 2022 Phys. Plasmas 29 023508 doi: 10.1063/5.0073439
|
[39] |
Sikora M H and Weller H R 2016 J. Fusion Energy 35 538 doi: 10.1007/s10894-016-0069-y
|
[40] |
Xie H S 2024 Plasma Phys. Control. Fusion 66 125005 doi: 10.1088/1361-6587/ad877f
|
[41] |
Costley A E, Hugill J and Buxton P F 2015 Nucl. Fusion 55 033001 doi: 10.1088/0029-5515/55/3/033001
|
[42] |
Gu X et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae72
|
[43] |
Song X M et al 2019 Fusion Eng. Des. 147 111254 doi: 10.1016/j.fusengdes.2019.111254
|
[44] |
Jiang X C et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae71
|
[45] |
Pereverzev G and Yushmanov P N 2002 ASTRA Automated system for transport analysis in a tokamak IPP-Report IPP-5-98 Garching: Max-Planck-Institut fuer Plasmaphysik
|
[46] |
Wang X Y et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ada9c3
|
[47] |
Waltz R E et al 1997 Phys. Plasmas 4 2482 doi: 10.1063/1.872228
|
[48] |
Dong L L et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ada421
|
[49] |
Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
|
[50] |
Shi Y J et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9e8f
|
[51] |
Ida K 2023 Rev. Mod. Plasma Phys. 7 23 doi: 10.1007/s41614-023-00126-3
|
[52] |
Bortolon A et al 2020 Nucl. Fusion 60 126010 doi: 10.1088/1741-4326/abaf31
|
[53] |
Sun Z et al 2021 Phys. Plasmas 28 082512 doi: 10.1063/5.0058809
|
[54] |
Nespoli F et al 2022 Nat. Phys. 18 350 doi: 10.1038/s41567-021-01460-4
|
[55] |
Görler T et al 2011 J. Comput. Phys. 230 7053 doi: 10.1016/j.jcp.2011.05.034
|
[56] |
Tan M Z et al 2025 Plasma Phys. Control. Fusion 67 025018 doi: 10.1088/1361-6587/ada824
|
[57] |
Tan M Z et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adad1a
|
[58] |
Kurskiev G S et al 2022 Nucl. Fusion 62 016011 doi: 10.1088/1741-4326/ac38c9
|
[59] |
Wagner F et al 1982 Phys. Rev. Lett. 49 1408 doi: 10.1103/PhysRevLett.49.1408
|
[60] |
Liang Y 2011 Fusion Sci. Technol. 59 586 doi: 10.13182/FST11-A11699
|
[61] |
Li K et al 2021 Nucl. Fusion 61 096002 doi: 10.1088/1741-4326/ac0f97
|
[62] |
Wang Y M et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad9f27
|
[63] |
Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
|
[64] |
Liang Y et al 2007 Phys. Rev. Lett. 98 265004 doi: 10.1103/PhysRevLett.98.265004
|
[65] |
Liang Y et al 2010 Phys. Rev. Lett. 105 065001 doi: 10.1103/PhysRevLett.105.065001
|
[66] |
Kirk A et al 2013 Plasma Phys. Control. Fusion 55 124003 doi: 10.1088/0741-3335/55/12/124003
|
[67] |
Bondeson A and Ward D J 1994 Phys. Rev. Lett. 72 2709 doi: 10.1103/PhysRevLett.72.2709
|
[68] |
Liu Y Q, Kirk A and Sun Y 2013 Phys. Plasmas 20 042503 doi: 10.1063/1.4799535
|
[69] |
Liu Y Q et al 2008 Phys. Plasmas 15 112503 doi: 10.1063/1.3008045
|
[70] |
Sun T T et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad8dfb
|
[71] |
Liang Y F et al 2022 Plasma Sci. Technol. 24 124021 doi: 10.1088/2058-6272/acaa8d
|
[72] |
Wang F Q et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adadb8
|
[73] |
Zohm H et al 1995 Plasma Phys. Control. Fusion 37 A313 doi: 10.1088/0741-3335/37/11A/022
|
[74] |
Liang Y et al 2007 Nucl. Fusion 47 L21 doi: 10.1088/0029-5515/47/9/L02
|
[75] |
Cai J Q et al 2024 Plasma Sci. Technol. 26 055102 doi: 10.1088/2058-6272/ad1571
|
[76] |
Cai J Q et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adb40b
|
[77] |
Xie H S et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae43
|
[1] | Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13 |
[2] | WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04 |
[3] | LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15 |
[4] | T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02 |
[5] | WANG Qing(王庆), BA Dechun(巴德纯), MING Yue(明悦), XU Lin(徐林), GUO Deyu(郭德宇). Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density[J]. Plasma Science and Technology, 2014, 16(10): 960-963. DOI: 10.1088/1009-0630/16/10/10 |
[6] | XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24 |
[7] | CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19 |
[8] | WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07 |
[9] | HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16 |
[10] | ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546. |