Advanced Search+
WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12
Citation: WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12

The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube

More Information
  • Received Date: April 01, 2011
  • A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tube and its working principles are described. On that basis, a view is presented that the breakdown voltage of the sub-nanosecond pulse discharge tube is dynamic. Because of the phenomenon that the deformation process of the mercury film on the electrode surface lags behind the charging process, the mercury film deformation process affects the dynamic breakdown voltage of the tube directly. The deformation of the mercury film is observed microscopically, and the dynamic breakdown voltage of the tube is measured using an oscillograph. The results show that all the parameters in the charging process, such as charging resistance, charging capacitance and DC power supply, affect the dynamic breakdown voltage of the tube. Based on these studies, the output pulse amplitude can be controlled continuously and individually by adjusting the power supply voltage. When the DC power supply is adjusted from 7 to 10 kV, the dynamic breakdown voltage ranges from 6.5 to 10 kV. According to our research, a kind of sub-nanosecond pulse generator is made, with a pulse width ranging from 0.5 to 2.5 ns, a rise time from 0.32 to 0.58 ns, and a pulse amplitude that is adjustable from 1.5 to 5 kV.
  • Related Articles

    [1]Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Sen WANG (王森), Dezheng YANG (杨德正), Feng LIU (刘峰), Wenchun WANG (王文春), Zhi FANG (方志). Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon[J]. Plasma Science and Technology, 2018, 20(7): 75404-075404. DOI: 10.1088/2058-6272/aabac8
    [4]Qing XIE (谢庆), Haofan LIN (林浩凡), Shuai ZHANG (张帅), Ruixue WANG (王瑞雪), Fei KONG (孔飞), Tao SHAO (邵涛). Deposition of SiCxHyOz thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance[J]. Plasma Science and Technology, 2018, 20(2): 25504-025504. DOI: 10.1088/2058-6272/aa97d0
    [5]Xiaoqiong WEN (温小琼), Qian LI (李倩), Jingsen LI (李井森), Chunsheng REN (任春生). Quantitative relationship between the maximum streamer length and discharge voltage of a pulsed positive streamer discharge in water[J]. Plasma Science and Technology, 2017, 19(8): 85401-085401. DOI: 10.1088/2058-6272/aa6bf0
    [6]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [7]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [8]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [9]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
    [10]SONG Xinxin (宋新新), TAN Zhenyu (谭震宇), CHEN Bo (陈波), ZHANG Yuantao (张远涛), LI Qingquan (李清泉). Evolution of the pulse width in dielectric barrier atmospheric pressure discharge[J]. Plasma Science and Technology, 2012, 14(9): 808-812. DOI: 10.1088/1009-0630/14/9/07

Catalog

    Article views (379) PDF downloads (1507) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return