Advanced Search+
LIU Feng (刘凤), XU Yuping (徐玉平), ZHOU Haishan (周海山), et al.. Exposure of Equal-Channel Angular Extruded Tungsten to Deuterium Plasma[J]. Plasma Science and Technology, 2015, 17(7): 595-600. DOI: 10.1088/1009-0630/16/17/7/12
Citation: LIU Feng (刘凤), XU Yuping (徐玉平), ZHOU Haishan (周海山), et al.. Exposure of Equal-Channel Angular Extruded Tungsten to Deuterium Plasma[J]. Plasma Science and Technology, 2015, 17(7): 595-600. DOI: 10.1088/1009-0630/16/17/7/12

Exposure of Equal-Channel Angular Extruded Tungsten to Deuterium Plasma

Funds: supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105001, 2013GB105002, 2015GB109001), National Natural Science Foundation of China (Nos. 11305213, 11405201), Technological Development Grant of Hefei Science Center of CAS (No. 2014TDG-HSC003), and China National Funds for Distinguished Young Scientists (No. 51325103)
More Information
  • Received Date: November 14, 2014
  • Surface morphology and deuterium retention in ultrafine-grained tungsten fabricated by equal-channel angular pressing (ECAP) have been examined after exposure to a low energy, high-flux deuterium (D) plasma at fluences of 3×1024 D/m 2 and 1×10 25 D/m 2 in a temperature range of 100 ? C-150 ? C. The methods used were scanning electron microscopy (SEM) and thermal desorption spectroscopy (TDS). Sparse and small blisters (∼0.1 μm) were observed by SEM after D plasma irradiation on every irradiated surface; yet they did not exhibit significant structure or plasma fluence dependence. Larger blisters or protrusions appeared after subsequent TDS heating up to 1000 ? C. The TDS results showed a single D desorption peak at ∼220 ? C for all samples and the D retention increased with increasing numbers of extrusion passes, i.e., the decrease of grain sizes. The increased D retention in this low temperature range should be attributed to the faster diffusion of D along the larger volume fraction of grain boundaries introduced by ECAP.
  • Related Articles

    [1]Tao WANG, Shizhao WEI, Sergio BRIGUGLIO, Gregorio VLAD, Fulvio ZONCA, Zhiyong QIU. Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas[J]. Plasma Science and Technology, 2024, 26(5): 053001. DOI: 10.1088/2058-6272/ad15e0
    [2]Yahui WANG, Tao WANG, Shizhao WEI, Zhiyong QIU. Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes[J]. Plasma Science and Technology, 2022, 24(2): 025105. DOI: 10.1088/2058-6272/ac42ba
    [3]Xiaolong ZHU, Feng WANG, Wei CHEN, Zhengxiong WANG. Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma[J]. Plasma Science and Technology, 2022, 24(2): 025102. DOI: 10.1088/2058-6272/ac41be
    [4]W BUANGAM, J GARCIA, T ONJUN, JET Contributors. Impact of E × B flow shear stabilization on particle confinement and density peaking at JET[J]. Plasma Science and Technology, 2020, 22(6): 65101-065101. DOI: 10.1088/2058-6272/ab7b0e
    [5]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [6]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [7]Tao ZHANG (张涛), Haiqing LIU (刘海庆), Guoqiang LI (李国强), Long ZENG (曾龙), Yao YANG (杨曜), Tingfeng MING (明廷凤), Xiang GAO (高翔), Hui LIAN (连辉), Kai LI (李凯), Yong LIU (刘永), Yingying LI (李颖颖), Tonghui SHI (石同辉), Xiang HAN (韩翔), the EAST team. Experimental observation of reverse- sheared Alfvén eigenmodes (RSAEs) in ELMy H-mode plasma on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(11): 115101. DOI: 10.1088/2058-6272/aac9b5
    [8]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [9]Yanqing HUANG (黄艳清), Tianyang XIA (夏天阳), Bin GUI (桂彬). Numerical linear analysis of the effects of diamagnetic and shear flow on ballooning modes[J]. Plasma Science and Technology, 2018, 20(4): 45101-045101. DOI: 10.1088/2058-6272/aaa4f1
    [10]ZHOU Chenglong (周铖龙), MA Yugang (马余刚), FANG Deqing (方德清). Shear Viscosity to Entropy Density Ratio in Au+Au Central Collisions[J]. Plasma Science and Technology, 2012, 14(7): 585-587. DOI: 10.1088/1009-0630/14/7/04

Catalog

    Article views (384) PDF downloads (1161) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return