Advanced Search+
RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
Citation: RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05

Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses

Funds: supported by the National Basic Research Program of China (973 Program) (No.2011CB209405), National Natural Science Foun- dation of China (No.51207154), and the Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi’an Jiaotong University of China (No.EIPE12204)
More Information
  • Received Date: November 29, 2012
  • The characteristics of high pressure sulphur hexafluoride (SF 6 ) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper. The influencing factors on discharge process, such as gas pressure, pulse repetition frequency (PRF), and number of applied pulses, are analyzed. Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses. Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current. The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure. The reduced electric field (E/p) decreases with the increase of PRF in all circumstances. The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
  • 1. Fletcher R C. 1949, Phys. Rev., 76: 1501.
    2. Chadband W G. 1980, J. Phys. D: Appl. Phys., 13:1299.
    3. Levinson S J and Kunhardt E E. 1982, IEEE Trans.Plasma Sci., 10: 266.
    4. Pillai A S and Hackam R. 1984, J. Appl. Phys., 56:1374.
    5. Zhong H H, Krner H C, Gollor M. 1992, IEEE Trans.Electr. Insul., 27: 496.
    6. Beroual A, Zahn M, Badent A, et al. 1998, IEEE Elec-trical Insulation Magazine, 14: 6.
    7. Felsenthal P and Proud J M. 1965, Phys. Rev., 139:1796.
    8. Martin T H, Guenther A H, and Kristiansen M. 1996,Martin on Pulsed power. Plenum Press, New York.
    9. Neuber A A and Hat.eld L L. 2000,. IEEE. Trans.Plasma Sci., 28: 1593.
    10. Shao T, Tarasenko V F, Zhang C, et al. 2013, J. Appl.Phys., 113: 093301.
    11. Takashima K, Yin Z Y, and Adamovich I V. 2013,Plasma Sources Sci. Technol., 22: 015013.
    12. Shao T, Sun G S, Yan P, et al. 2006, J. Phys. D: Appl.Phys., 39: 2192.
    13. Chang J S, Wang H, Zhang Q G, et al. 2011, Plasma.Sci. Technol., 13: 719.
    14. Baksht E K, Burachenko A G, Erofeev M V, et al..2008, Laser Physics, 18: 732.
    15. Shao T, Zhang C, Jiang H, et al. 2011, IEEE Trans..Plasma Sci., 39: 1881.
    16. Tao F, Zhang Q, Gao B, et al. 2008, Plasma Sci. Tech-nol., 10: 588.
    17. Mesyats G A, Bychkov Y I and Kremnev V V. 1972,.Soviet Phys. Usp., 15: 282.
    18. Kunhardt E E and Byszewski W W. 1980, Phys. Rev.A, 21: 2069.
    19. Babich L P, Loiko T V and Tsukerman V A. 1990,.Soviet Phys. Usp., 33: 521.
    20. Meppelink J, Diederich K, Feser K, et al. 1989, IEEE.Trans. Power Delivery, 4: 223.
    21. Working Group 33. 1988, Very fast transient phenom-ena associated with GIS. CIGRE, Paris, France.
    22. Ran H J, Zhang C, and Wang L, et al. 2012, High. Current Electronics, 10: 112.
    23. Shao T, Zhang C, Long K H,. et. al. 2010,. Chinese.Physics B., 19: 040601.
    24. Pai D Z, Lacoste D A and Laux C O. 2010, Plasma. Sources Sci. Technol., 19: 065015.

Catalog

    Article views (196) PDF downloads (2049) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return