Advanced Search+
Dongxuan ZHANG, Junxian YU, Mengyao LI, Jie PAN, Feng LIU, Zhi FANG. Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters[J]. Plasma Science and Technology, 2023, 25(11): 114004. DOI: 10.1088/2058-6272/acd83c
Citation: Dongxuan ZHANG, Junxian YU, Mengyao LI, Jie PAN, Feng LIU, Zhi FANG. Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters[J]. Plasma Science and Technology, 2023, 25(11): 114004. DOI: 10.1088/2058-6272/acd83c

Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters

More Information
  • Corresponding author:

    Feng LIU, E-mail: f.liu_1@njtech.edu.cn

  • Received Date: February 02, 2023
  • Revised Date: May 22, 2023
  • Accepted Date: May 22, 2023
  • Available Online: December 05, 2023
  • Published Date: July 06, 2023
  • Nanosecond (ns) pulsed dielectric barrier discharge (DBD) is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure, which makes it suitable for wide applications. In this work, the ns pulse power supply is used to excite Ar DBD and the influences of the pulse parameters (voltage amplitude, pulse width, pulse rise and fall times) on the DBD uniformity are investigated. The gas gap voltage (Ug) and conduct current (Ig) are separated from the measured voltage and current waveforms to analyze the influence of electrical parameters. The spectral line intensity ratio of two Ar excited species is used as an indicator of the electron temperature (Te). The time resolved discharge processes are recorded by an intensified charge-coupled device camera and a one-dimensional fluid model is employed to simulate the spatial and temporal distributions of electrons, ions, metastable argon atoms and Te. Combining the experimental and numerical results, the mechanism of the pulse parameters influencing on the discharge uniformity is discussed. It is shown that the space electric field intensity and the space particles' densities are mainly responsible for the variation of discharge uniformity. With the increase of voltage and pulse width, the electric field intensity and the density of space particles increased, which results in the discharge mode transition from non-uniform to uniform, and then non-uniform. Furthermore, the extension of pulse rise and fall times leads to the discharge transition from uniform to non-uniform. The results are helpful to reveal the mechanism of ns pulsed DBD mode transition and to realize controllable and uniform plasma sources at atmospheric pressure.

  • This work is supported by National Natural Science Foundation of China (Nos. 52177148, 51777091 and 52037004)and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_1449).

  • [1]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1 doi: 10.1023/A:1022470901385
    [2]
    Li H et al 2021 Phys. Plasmas 28 113505 doi: 10.1063/5.0064574
    [3]
    Dorai R and Kushner M J 2003 J. Phys. D: Appl. Phys. 36 666 doi: 10.1088/0022-3727/36/6/309
    [4]
    Chen W M et al 2018 Prog. Org. Coat. 125 128 doi: 10.1016/j.porgcoat.2018.06.018
    [5]
    Ojah N et al 2019 Appl. Surf. Sci. 475 219 doi: 10.1016/j.apsusc.2018.12.270
    [6]
    Li M et al 2018 Vacuum 157 249 doi: 10.1016/j.vacuum.2018.08.058
    [7]
    Homola T et al 2019 Plasma Chem. Plasma Process. 39 1227 doi: 10.1007/s11090-019-09993-6
    [8]
    Tu X and Whitehead J C 2012 Appl. Catal. B: Environ. 125 439 doi: 10.1016/j.apcatb.2012.06.006
    [9]
    Zhang S et al 2022 High Voltage 7 718 doi: 10.1049/hve2.12201
    [10]
    Cui Z L et al 2022 High Voltage 7 1048 doi: 10.1049/hve2.12230
    [11]
    Liu K et al 2023 Plasma Process. Polym. 20e2200134 doi: 10.1002/ppap.202200134
    [12]
    Misra N N and Martynenko A 2021 Innovative Food Sci. Emerging Technol. 70 102672 doi: 10.1016/j.ifset.2021.102672
    [13]
    Liu Y F et al 2014 Appl. Surf. Sci. 313 53 doi: 10.1016/j.apsusc.2014.05.129
    [14]
    Milaniak N, Laroche G and Massines F 2021 Plasma Processes Polym. 18 2000248 doi: 10.1002/ppap.202000248
    [15]
    Schmitz G J et al 2016 Sci. Technol. Adv. Mater. 17 410 doi: 10.1080/14686996.2016.1194166
    [16]
    Shao T et al 2013 IEEE Trans. Plasma Sci. 41 3069 doi: 10.1109/TPS.2013.2279254
    [17]
    Liu S et al 2022 Curr. Appl Phys. 44 12 doi: 10.1016/j.cap.2022.09.005
    [18]
    Osawa N and Yoshioka Y 2012 IEEE Trans. Plasma Sci. 40 2 doi: 10.1109/TPS.2011.2172634
    [19]
    Liu W Z et al 2018 Plasma Sci. Technol. 20 035401 doi: 10.1088/2058-6272/aa9885
    [20]
    Zeniou A et al 2017 J. Phys. D: Appl. Phys. 50 135204 doi: 10.1088/1361-6463/aa5d69
    [21]
    Shao T et al 2018 High Voltage 3 14 doi: 10.1049/hve.2016.0014
    [22]
    Yang D Z et al 2012 Plasma Sources Sci. Technol. 21 035004 doi: 10.1088/0963-0252/21/3/035004
    [23]
    Zhang C et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304 doi: 10.1109/TDEI.2013.6571449
    [24]
    Jin S H et al 2022 High Voltage 7 98 doi: 10.1049/hve2.12126
    [25]
    Jiang H et al 2011 IEEE Trans. Plasma Sci. 39 2076 doi: 10.1109/TPS.2011.2146280
    [26]
    Wang Q et al 2018 Plasma Sci. Technol. 20 035404 doi: 10.1088/2058-6272/aaa357
    [27]
    Lu X P et al 2009 IEEE Trans. Plasma Sci. 37 647 doi: 10.1109/TPS.2009.2015321
    [28]
    Wang Y Y et al 2021 Plasma Sources Sci. Technol. 30 075009 doi: 10.1088/1361-6595/abfbc6
    [29]
    Pan J et al 2016 Plasma Sci. Technol. 18 1081 doi: 10.1088/1009-0630/18/11/05
    [30]
    Pourali N et al 2021 Phys. Plasmas 28 013502 doi: 10.1063/5.0027562
    [31]
    Ayan H et al 2009 J. Phys. D: Appl. Phys. 42 125202 doi: 10.1088/0022-3727/42/12/125202
    [32]
    Starikovskaia S M et al 2001 Plasma Sources Sci. Technol. 10 344 doi: 10.1088/0963-0252/10/2/324
    [33]
    Yang D Z et al 2013 Appl. Phys. Lett. 102 194102 doi: 10.1063/1.4804583
    [34]
    Liu F et al 2022 Plasma Sci. Technol. 24 054004 doi: 10.1088/2058-6272/ac41c1
    [35]
    Engelhardt M et al 2017 Plasma Process. Polym. 14 1600095 doi: 10.1002/ppap.201600095
    [36]
    Liu F et al 2021 J. Appl. Phys. 129 033302 doi: 10.1063/5.0031220
    [37]
    Liu F et al 2010 Plasma Sources Sci. Technol. 19 045017 doi: 10.1088/0963-0252/19/4/045017
    [38]
    Roy N C et al 2021 Plasma Process. Polym. 18 2000087 doi: 10.1002/ppap.202000087
    [39]
    Calzá M et al 2020 Eur. Phys. J. Plus 135 1 doi: 10.1140/epjp/s13360-019-00059-2
    [40]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001 doi: 10.1088/0022-3727/43/40/403001
    [41]
    Liu C, Dobrynin D and Fridman A 2014 J. Phys. D: Appl. Phys. 47 252003 doi: 10.1088/0022-3727/47/25/252003
    [42]
    Babaeva N Y and Kushner M J 2014 Plasma Sources Sci. Technol. 23 065047 doi: 10.1088/0963-0252/23/6/065047
    [43]
    Liu C, Fridman A and Dobrynin D 2019 J. Phys. D: Appl. Phys. 52 105205 doi: 10.1088/1361-6463/aaf8f0
    [44]
    Callegari T, Bernecker B and Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003 doi: 10.1088/0963-0252/23/5/054003
    [45]
    Liu K et al 2022 Phys. Chem. Chem. Phys. 24 8940 doi: 10.1039/D2CP00547F
    [46]
    Liu K et al 2022 Vacuum 198 110901 doi: 10.1016/j.vacuum.2022.110901
    [47]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39 doi: 10.1088/0022-3727/36/1/306
    [48]
    Martens T, Bogaerts A and van Dijk J 2010 Appl. Phys. Lett. 96 131503 doi: 10.1063/1.3315881
    [49]
    Lee M H and Chung C W 2005 Phys. Plasmas 12 073501 doi: 10.1063/1.1935407
    [50]
    Bogaerts A and Gijbels R 1995 Phys. Rev. A 52 3743 doi: 10.1103/PhysRevA.52.3743
    [51]
    Pan J et al 2014 Plasma Sources Sci. Technol. 23 065019 doi: 10.1088/0963-0252/23/6/065019
    [52]
    Liu F C, He Y F and Wang X F 2014 Chin. Phys. B 23 075209 doi: 10.1088/1674-1056/23/7/075209
    [53]
    Qi Y et al 2019 IEEE Trans. Plasma Sci. 47 1553 doi: 10.1109/TPS.2019.2892787
    [54]
    Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556 doi: 10.1088/0022-3727/27/12/017
    [55]
    Zhang Y T, Liu Y and Liu B 2017 Plasma Sci. Technol. 19 085402 doi: 10.1088/2058-6272/aa6a51
    [56]
    Qi H C et al 2016 Plasma Sci. Technol. 18 520 doi: 10.1088/1009-0630/18/5/13
    [57]
    Zhang S et al 2014 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 117 535 doi: 10.1016/j.saa.2013.08.051
    [58]
    Guo H F et al 2018 Phys. Plasmas 25 093505 doi: 10.1063/1.5038943
    [59]
    Gu J W et al 2016 Plasma Sci. Technol. 18 230 doi: 10.1088/1009-0630/18/3/03
    [60]
    Yu S et al 2016 Phys. Plasmas 23 023510 doi: 10.1063/1.4942225
    [61]
    Zhang S et al 2019 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 207 294 doi: 10.1016/j.saa.2018.09.004
  • Related Articles

    [1]Wenhao ZHOU, Dongxuan ZHANG, Xiaohui DUAN, Xi ZHU, Feng LIU, Zhi FANG. Effect of dielectric material on the uniformity of nanosecond pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(9): 094008. DOI: 10.1088/2058-6272/ad5fe6
    [2]Feng LIU, Yue ZHUANG, Yulei ZHAO, Jie CHEN, Zhi FANG. Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies[J]. Plasma Science and Technology, 2022, 24(5): 054004. DOI: 10.1088/2058-6272/ac41c1
    [3]Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7
    [4]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [5]Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1
    [6]Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357
    [7]PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05
    [8]GU Jianwei (顾建伟), ZHANG Cheng (章程), WANG Ruixue (王瑞雪), YAN Ping (严萍), SHAO Tao (邵涛). Improvement of Spatial Uniformity of Nanosecond-Pulse Diffuse Discharges in a Multi-Needle-to-Plane Gap[J]. Plasma Science and Technology, 2016, 18(3): 230-235. DOI: 10.1088/1009-0630/18/3/03
    [9]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [10]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.

Catalog

    Figures(10)  /  Tables(2)

    Article views (104) PDF downloads (45) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return