Advanced Search+
ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
Citation: ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08

Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process

Funds: supported by National Natural Science Foundation of China (No. 51077032)
More Information
  • Received Date: July 14, 2013
  • Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF 6 -N 2 -CO 2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference–flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap–space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo–spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.
  • 1 Li Bin. 2003, SF6 High Voltage Electrical Design. Mechanical Industry Press, Beijing (in Chinese)
    2 Qiu Yuchang, 1994, GIS Device and Insulation Technology. Water Power Press, Beijing (in Chinese)
    3 Yan Zhang, Zhu Dehuan. 2007, High Voltage and Insulation Technology. China Electric Power Press, Beijing(in Chinese)
    4 Wang Feng, Qiu Yuchang. 2003, Power System Technology, 27: 54
    5 Tang Jia. 2011, Electric Power, 44: 30
    6 Vazquez P A, Georghiou G E, Castellanos A. 2006,Journal of Physics D: Applied Physics, 39: 2754
    7 Wang Qi, Qiu Yuchang. 2004, Electric Wire & Cable,1: 28
    8 Zhou Hui, Qiu Yuchan, Tong Yonggang, et al. 2003,High Voltage Apparatus, 39: 13
    9 Wang Feng, Qiu Yuchang, Zhang Qiaogen. 2002, Insulating Materials, 35: 31
    10 Qiu Y, Chalmers I D. 1993, Journal of Physics D: Applied Physics, 26: 1928
    11 Chen Qingguo, Xao Dengmang, Qiu Yuchang. 2001,Journal of Xi'an JiaoTong University, 35: 338
    12 Qiu Y, Kuffel E. 1999, IEEE Trans. Dielectrics and Electrical Insulation, 6: 892
    13 Christopphorou I G, Olthoff J K, Van Brunt R J. 1997, IEEE Electrical Insulation Magazine, 13: 20
    14 Qiu X Q, Chalmers I D. Coventry P. 1999, Journal of Physics D: Applied Physics, 32: 2918
    15 Wu Biantao, Xiao Dengming. 2007, Transactions of China Electrotechnical Society, 22: 13
    16 Wu C, Kunhardt E. 1988, Physical Review A, 37: 4396
    17 Wang M C, Kunhardt E E. 1990, Physical Review A,42: 2366
    18 Ohtsuka S, Nagara S, Miura K, et al. 2000, IEEE International Symposium on Electrical Insulation, 2: 288
    19 Seo H J, Rhie D H. 2005, Proc. of the 5th WSEAS-IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, p.213
    20 Morrow R. 1987, Physical Review A, 35: 1778
    21 Li Y, Fan J, Qiu Y. 1995, Proceedings of the 9th International Symposium on High Voltage Engineering,Graz, Austria, August 27-29, p.2254
    22 Stato N. 1980, Journal of Physics D: Applied Physics,13: 3
    23 Boris J P, Book D L. 1973, Journal of Computational Physics, 11: 38
    24 Zealezak S T. 1979, Journal of Computational Physics,31: 335
    25 Morrow R, Lowke J. 1981, Journal of Physics D: Applied Physics, 14: 2027
    26 Dhali S K, Williams P F. 1985, Physical Review A:General Physics, 31: 1219
    27 Dhali S K, Williams P F. 1987, Journal of Applied Physics, 62: 4696
    28 Liao Ruijin, Wu Feifei, Liu Xinghua, et al. 2012, Acta Physical Sinica, 24: 245201
    29 Itikawa Y. 2002, J. Phys. Chem. Ref. Data, 3: 749
    30 Christophorou L G, VanBrunt R J. 1995, IEEE Trans.Dielectrics and Electrical Insulation, 5: 952
    31 Liang Xidong. 2003, High Voltage Engineering. Tsinghua University Press, Beijing (in Chinese)
    32 Pancheshnyi S. 2005, Plasma Sources Science andTechnology, 14: 645
    33 Zhang Yun, Zeng Rong, Yang Xuechang, et al. 2009,Proceedings of the CSEE, 29: 110
  • Related Articles

    [1]Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b
    [2]Wenjun YANG (杨文军), Guoqiang LI (李国强), Yanqiang HU (胡砚强), Songlin LIU (刘松林), Hang LI (李航), Xiang GAO (高翔). Effects of kinetic profiles on neutron wall loading distribution in CFETR[J]. Plasma Science and Technology, 2017, 19(8): 85102-085102. DOI: 10.1088/2058-6272/aa6795
    [3]ZHANG Xiaokang (张小康), LIU Songlin (刘松林), ZHU Qingjun (祝庆军), GAO Fangfang (高芳芳), LI Jia (李佳). Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR[J]. Plasma Science and Technology, 2016, 18(11): 1130-1138. DOI: 10.1088/1009-0630/18/11/12
    [4]YU Guanying (余冠英), LIU Xufeng (刘旭峰), LIU Songlin (刘松林). An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR[J]. Plasma Science and Technology, 2016, 18(10): 1038-1043. DOI: 10.1088/1009-0630/18/10/12
    [5]LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14
    [6]CHENG Anyi (成安义), ZHANG Qiyong (张启勇), FU Bao (付豹), LU Xiaofei (陆小飞). Process Design of Cryogenic Distribution System for CFETR CS Model Coil[J]. Plasma Science and Technology, 2016, 18(2): 202-205. DOI: 10.1088/1009-0630/18/2/18
    [7]YAO Yao (姚尧), SONG Yuntao (宋云涛), HUANG Xiongyi (黄雄一), SHEN Guang (沈光), WU Huan (吴欢), WANG Lin (王琳), HU Bing (胡兵), LUO Zhiren (罗志仁). R&D Activities of Joint Manufacture for ITER Poloidal Field Coil[J]. Plasma Science and Technology, 2015, 17(7): 612-616. DOI: 10.1088/1009-0630/17/7/15
    [8]GUO Bin(郭斌), SONG Zhiquan(宋执权), XU Liuwei(许留伟), ZHANG Ming(张明), LI Jinchao(李金超), JIANG Li(蒋力), FU Peng(傅鹏), WANG Min(王敏), DONG Lin(董琳). Design of a DC Busbar for the ITER PF Converter[J]. Plasma Science and Technology, 2014, 16(4): 406-409. DOI: 10.1088/1009-0630/16/4/19
    [9]MA Xuebin(马学斌), LIU Songlin(刘松林), LI Jia(李佳), PU Yong(蒲勇), CHEN Xiangcun(陈香存). Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept[J]. Plasma Science and Technology, 2014, 16(4): 390-395. DOI: 10.1088/1009-0630/16/4/16
    [10]K. YAMAUCHI, K. SHIMADA, T. TERAKADO, M. MATSUKAWA, R. COLETTI, A. LAMPASI, E. GAIO, A. COLETT, L. NOVELLO. Detailed Analysis of the Transient Voltage in a JT-60SA PF Coil Circuit[J]. Plasma Science and Technology, 2013, 15(2): 148-151. DOI: 10.1088/1009-0630/15/2/14

Catalog

    Article views (163) PDF downloads (1456) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return