Advanced Search+
ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
Citation: ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08

Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process

Funds: supported by National Natural Science Foundation of China (No. 51077032)
More Information
  • Received Date: July 14, 2013
  • Dynamic characteristics of discharge particles are described within the framework of a two-dimensional photoionization-hydrodynamic numerical model for the discharge process of SF 6 -N 2 -CO 2 gas mixtures at atmospheric pressure, under a uniform DC applied field. The finite difference–flux corrected transport (FD-FCT) algorithm is used in the numerical implementation for improving the accuracy and efficiency. Then the tempo-spatial distributions of the gap–space electric field and electron velocity are calculated from the microscopic mechanism, and the dynamic behaviors of charged particles are obtained in detail. Meanwhile, the tempo–spatial critical point of the avalanche-to-streamer in this model is discovered, and several microscopic parameters are also investigated. The results showed that the entire gap discharge process can be divided into two phases of avalanche and streamer according to Raether-Meek criterion; the electron density within the discharge channel is lower compared to that of positive and negative ions; space charge effect is a dominant factor for the distortion of spatial electric field, making the discharge channel expand toward both electrodes faster; photoionization provides seed electrons for a secondary electron avalanche, promoting the formation and development speed of the streamer.
  • 1 Li Bin. 2003, SF6 High Voltage Electrical Design. Mechanical Industry Press, Beijing (in Chinese)
    2 Qiu Yuchang, 1994, GIS Device and Insulation Technology. Water Power Press, Beijing (in Chinese)
    3 Yan Zhang, Zhu Dehuan. 2007, High Voltage and Insulation Technology. China Electric Power Press, Beijing(in Chinese)
    4 Wang Feng, Qiu Yuchang. 2003, Power System Technology, 27: 54
    5 Tang Jia. 2011, Electric Power, 44: 30
    6 Vazquez P A, Georghiou G E, Castellanos A. 2006,Journal of Physics D: Applied Physics, 39: 2754
    7 Wang Qi, Qiu Yuchang. 2004, Electric Wire & Cable,1: 28
    8 Zhou Hui, Qiu Yuchan, Tong Yonggang, et al. 2003,High Voltage Apparatus, 39: 13
    9 Wang Feng, Qiu Yuchang, Zhang Qiaogen. 2002, Insulating Materials, 35: 31
    10 Qiu Y, Chalmers I D. 1993, Journal of Physics D: Applied Physics, 26: 1928
    11 Chen Qingguo, Xao Dengmang, Qiu Yuchang. 2001,Journal of Xi'an JiaoTong University, 35: 338
    12 Qiu Y, Kuffel E. 1999, IEEE Trans. Dielectrics and Electrical Insulation, 6: 892
    13 Christopphorou I G, Olthoff J K, Van Brunt R J. 1997, IEEE Electrical Insulation Magazine, 13: 20
    14 Qiu X Q, Chalmers I D. Coventry P. 1999, Journal of Physics D: Applied Physics, 32: 2918
    15 Wu Biantao, Xiao Dengming. 2007, Transactions of China Electrotechnical Society, 22: 13
    16 Wu C, Kunhardt E. 1988, Physical Review A, 37: 4396
    17 Wang M C, Kunhardt E E. 1990, Physical Review A,42: 2366
    18 Ohtsuka S, Nagara S, Miura K, et al. 2000, IEEE International Symposium on Electrical Insulation, 2: 288
    19 Seo H J, Rhie D H. 2005, Proc. of the 5th WSEAS-IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, p.213
    20 Morrow R. 1987, Physical Review A, 35: 1778
    21 Li Y, Fan J, Qiu Y. 1995, Proceedings of the 9th International Symposium on High Voltage Engineering,Graz, Austria, August 27-29, p.2254
    22 Stato N. 1980, Journal of Physics D: Applied Physics,13: 3
    23 Boris J P, Book D L. 1973, Journal of Computational Physics, 11: 38
    24 Zealezak S T. 1979, Journal of Computational Physics,31: 335
    25 Morrow R, Lowke J. 1981, Journal of Physics D: Applied Physics, 14: 2027
    26 Dhali S K, Williams P F. 1985, Physical Review A:General Physics, 31: 1219
    27 Dhali S K, Williams P F. 1987, Journal of Applied Physics, 62: 4696
    28 Liao Ruijin, Wu Feifei, Liu Xinghua, et al. 2012, Acta Physical Sinica, 24: 245201
    29 Itikawa Y. 2002, J. Phys. Chem. Ref. Data, 3: 749
    30 Christophorou L G, VanBrunt R J. 1995, IEEE Trans.Dielectrics and Electrical Insulation, 5: 952
    31 Liang Xidong. 2003, High Voltage Engineering. Tsinghua University Press, Beijing (in Chinese)
    32 Pancheshnyi S. 2005, Plasma Sources Science andTechnology, 14: 645
    33 Zhang Yun, Zeng Rong, Yang Xuechang, et al. 2009,Proceedings of the CSEE, 29: 110
  • Related Articles

    [1]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [2]Jia FU (符佳), Bo LYU (吕波), Haiqing LIU (刘海庆), Yingying LI (李颖颖), Dongmei LIU (刘冬梅), Yongqing WEI (魏永清), Chao FAN (范超), Yuejiang SHI (石跃江), Zhenwei WU (吴振伟), Baonian WAN (万宝年). Development of signal analysis method for the motional Stark effect diagnostic on EAST[J]. Plasma Science and Technology, 2017, 19(10): 104001. DOI: 10.1088/2058-6272/aa7941
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Guosheng XU (徐国盛), Xingquan WU (伍兴权). Understanding L–H transition in tokamak fusion plasmas[J]. Plasma Science and Technology, 2017, 19(3): 33001-033001. DOI: 10.1088/2058-6272/19/3/033001
    [6]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [7]WU Guojiang(吴国将), ZHANG Xiaodong(张晓东). Analysis of the Variability of the L-H Transition Power Threshold in a Helium-4 Discharge[J]. Plasma Science and Technology, 2014, 16(6): 557-561. DOI: 10.1088/1009-0630/16/6/03
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views (163) PDF downloads (1456) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return