Advanced Search+
LIU Yuanye (刘远野), HE Feng (何锋), ZHAO Xiaofei (赵晓菲), OUYANG Jiting (欧阳吉庭). Evolution of Striation in Pulsed Glow Discharges[J]. Plasma Science and Technology, 2016, 18(1): 30-34. DOI: 10.1088/1009-0630/18/1/06
Citation: LIU Yuanye (刘远野), HE Feng (何锋), ZHAO Xiaofei (赵晓菲), OUYANG Jiting (欧阳吉庭). Evolution of Striation in Pulsed Glow Discharges[J]. Plasma Science and Technology, 2016, 18(1): 30-34. DOI: 10.1088/1009-0630/18/1/06

Evolution of Striation in Pulsed Glow Discharges

Funds: supported by National Natural Science Foundation of China (Nos. 10875010 and 11175017)
More Information
  • Received Date: August 22, 2015
  • In this work, striations in pulsed glow discharges are studied by experiments and Particle-In-Cell/Monte Carlo Collision (PIC/MCC) simulation. The spatio-temporal evolution of the potential and the electron energy during the discharge are analyzed. The processes of striation formation in pulsed glow discharges and dielectric barrier discharges (DBD) are compared. The results show that the mechanisms of striation in pulsed DC discharge and DBD are similar to each other. The evolution of electron energy distribution function before and after the striation formation indicates that the striation results from the potential well of the space charge. During a pulsed breakdown, the striations are formed one by one towards the anode in a weak field channel. This indicates that the formation of striations in a pulsed discharge depends on the flow of modulated electrons.
  • 1 Ermolaev G V, Kovalev O B, Orishich A M, et al. 2006, Journal of Physics D: Applied Physics, 39: 4236 2 Hsieh G C, Lin C H. 2001, Industrial Electronics, 48:352 3 Hong Y C, Uhm H S, Yi W J. 2008, Applied Physics Letters, 93: 051504 4 Rauf S, Kushner M J. 1999, Journal of Applied Physics, 85: 3460 5 Cho G, Choi E H, Kim Y G, et al. 2000, Journal of Applied Physics, 87: 4113 6 Kolobov V I. 2006, Journal of Physics D: Applied Physics, 39: R487 7 Feng S, He F, Ouyang J T. 2007, Chinese Physics Letters, 24: 2304 8 Verboncoeur J P, Langdon A B, Gladd N T. 1995, Computer Physics Communications, 87: 199 9 Vahedi V, Surendra M. 1995, Computer Physics Communications, 87: 179 10 Zhao X F, Xu S W, Ouyang J T. 2013, Europhysics Letters, 103: 55001 11 Feng S, He F, Ouyang J T. 2007, Chinese Physics Letters, 24: 2304 12 Khudik V N, Shvydky A, Theodosiou C E. 2006, Physics of Plasmas, 13: 034501 13 He F, Zhao X, He S, et al. 2010, Physics of Plasmas, 17: 033510
  • Related Articles

    [1]Sunggeun LEE, Hankwon LIM. Landau damping of twisted waves in Cairns distribution with anisotropic temperature[J]. Plasma Science and Technology, 2021, 23(8): 85001-085001. DOI: 10.1088/2058-6272/ac01be
    [2]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [3]Wei WANG (王玮), Zhengxiong WANG (王正汹), Jiquan LI (李继全), Yasuaki KISHIMOTO, Jiaqi DONG (董家齐), Shu ZHENG (郑殊). Magnetic-island-induced ion temperature gradient mode: Landau damping, equilibrium magnetic shear and pressure flattening effects[J]. Plasma Science and Technology, 2018, 20(7): 75101-075101. DOI: 10.1088/2058-6272/aab48f
    [4]Imran Ali KHAN, G MURTAZA. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode[J]. Plasma Science and Technology, 2018, 20(3): 35302-035302. DOI: 10.1088/2058-6272/aaa457
    [5]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [6]REN Yanqiu (仁艳秋), LI Gun (李滚), DUAN Wenshan (段文山). Damping Solitary Wave in a Three-Dimensional Rectangular Geometry Plasma[J]. Plasma Science and Technology, 2016, 18(2): 108-113. DOI: 10.1088/1009-0630/18/2/02
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [9]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [10]XIU Shixin (修士新), YE Zhaoping (叶兆平), LI Quan (李泉). Influce of Initial Opening Speed on Characteristics of a Drawn Vacuum Arc[J]. Plasma Science and Technology, 2011, 13(3): 376-380.

Catalog

    Article views (394) PDF downloads (983) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return