Advanced Search+
WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
Citation: WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08

Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

Funds: supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)
More Information
  • Received Date: August 10, 2015
  • In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fiuid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He+2 and O2, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.
  • 1 Kong M G, Kroesen G, Morˉll G, et al. 2009, New J. Phys., 11: 115012 2 Niemi K, Reuter S, Graham L M, et al. 2010, J. Phys. D: Appl. Phys., 43: 124006 3 He J and Zhang Y T. 2012, Plasma Process. Polym., 9: 919 4 Yang A, Liu D, Rong M, et al. 2014, Phys. Plasmas, 21: 083501 5 Lu X and Laroussi M. 2006, J. Appl. Phys., 100: 063302 6 Laroussi M, Lu X, Kolobov V, et al. 2004, J. Appl. Phys., 96: 3028 7 Lu X and Laroussi M. 2008, Appl. Phys. Lett., 92: 051501 8 Walsh J L, Liu D X, Iza F, et al. 2010, J. Phys. D: Appl. Phys., 43: 032001 9 Lu X, Ye T, Cao Y, et al. 2008, J. Appl. Phys., 104: 053309 10 Nie L L, Tan Z Y, Chen B, et al. 2013, IEEE Trans. Plasma Sci., 41: 1648 11 Wang X L, Tan Z Y, Nie L L, et al. 2014, IEEE Trans. Plasma Sci., 42: 2245 12 Rauf S and Kushner M J. 1999, J. Appl. Phys., 85: 3460 13 Wang Q, Economou D J, Donnelly V M. 2006, J. Appl. Phys., 100: 023301 14 Deloche R, Monchicourt P, Cheret M, et al. 1976, Phys. Rev. A, 13: 1140 15 Golubovskii Y B, Maiorov V A, Behnke J, et al. 2003, J. Phys. D: Appl. Phys., 36: 39 16 Kim S, Lieberman M A, Lichtenberg A J, et al. 2006, J. Vac. Sci. Technol. A, 24: 2025 17 Leveille V and Coulombe S. 2005, Plasma Sources Sci. Technol., 14: 467 18 Gudmundsson J T, Kouznetsov I G, Patel K K, et al. 2001, J. Phys. D: Appl. Phys., 34: 1100 19 Stafford D S and Kushner M J. 2004, J. Appl. Phys., 96: 2451 20 Gordillo-Vazquez F J. 2008, J. Phys. D: Appl. Phys., 41: 234016 21 Hadi-Ziane S, Held B, Pignolet P, et al. 1992, J. Phys. D: Appl. Phys., 25: 677 22 Baulch D L, Cox R A, Crutzen P J, et al. 1982, J. Phys. Chem. Ref. Data, 11: 327 23 Soria C, Pontiga F, Castellanos A. 2004, Plasma Sources Sci. Technol., 13: 95 24 Kulikovsky A A. 1994, J. Phys. D: Appl. Phys., 27: 2556 25 Scharfetter D L and Gummel H K. 1969, IEEE Trans. Electron Dev., 16: 64 26 Shi H, Zhang Y H, Wang D Z. 2008, Phys. Plasmas, 15: 122306 27 Nikandrov D S, Tsendin L D, Kolobov V I, et al. 2008, IEEE Trans. Plasma Sci., 36: 131 28 Oda A, Sakai Y, Akashi H, et al. 1999, J. Phys. D: Appl. Phys., 32 : 2726 29 Nikandrov D S, Arslanbekov R R, Kolobov V I. 2008, IEEE Trans. Plasma Sci., 36 : 932 30 Liu S and Neiger M. 2001, J. Phys. D: Appl. Phys., 34: 1632 31 Laroussi M, Lu X, Kolobov V, et al. 2004, J. Appl. Phys., 96: 3028 32 Lu X and Laroussi M. 2006, J. Phys. D: Appl. Phys., 39: 1127 33 Deng X T, Shi J J and Kong M G. 2007, J. Appl. Phys., 101: 074701 34 Yu H, Perni S, Shi J J, et al. 2006, J. Appl. Microbiology, 101: 1323 35 Lichtenberg A J, Kouznetsov I G, Lee Y T, et al. 1997, Plasma Sources Sci. Technol., 6: 437
  • Related Articles

    [1]Yuxi XIA (夏玉玺), Shengpeng YANG (杨生鹏), Shaoyong CHEN (陈少永), Changjian TANG (唐昌建). Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Science and Technology, 2020, 22(8): 85001-085001. DOI: 10.1088/2058-6272/ab785d
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Jixiong XIAO (肖集雄), Zhong ZENG (曾中), Zhijiang WANG (王之江), Donghui XIA (夏冬辉), Changhai LIU (刘昌海). Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel[J]. Plasma Science and Technology, 2017, 19(2): 24004-024004. DOI: 10.1088/2058-6272/19/2/024004
    [4]ZHOU Qinghua(周庆华), YANG Chang(杨昶), HE Yihua(贺艺华), LIU Si(刘斯), ZHOU Xiaoping(周晓萍), TANG Lijun(唐立军), XIAO Fuliang(肖伏良). Ray Tracing Study of Electromagnetic Ion Cyclotron Waves Associated with Bi-Ion Frequencies[J]. Plasma Science and Technology, 2014, 16(6): 577-581. DOI: 10.1088/1009-0630/16/6/07
    [5]RU Lili(汝丽丽), MENG Yuedong(孟月东), HUANG Jianjun(黄建军), QI Bing(齐冰). On-Line Measurement of Ion Density in Atmospheric Nitrogen Discharge Filaments via Radiation Signals from Plasma Oscillation[J]. Plasma Science and Technology, 2014, 16(5): 448-453. DOI: 10.1088/1009-0630/16/5/02
    [6]XIAO Jixiong(肖集雄), CHEN Shixiu(陈仕修), TIAN Wei(田微), CHEN Kun(陈堃). Influence of the Beam Self-Fields on the Dispersion Characteristics of EM Waves in a Dielectric Waveguide Filled with Plasma[J]. Plasma Science and Technology, 2014, 16(1): 1-5. DOI: 10.1088/1009-0630/16/1/01
    [7]JIA Shenli (贾申利), LI Rui (李瑞), LIU Jianjun (刘建军), LI Xingwen (李兴文), et al.. The Plasma Channel Evolution Characteristics of Pulsed Flashlamps Working in an Array[J]. Plasma Science and Technology, 2013, 15(7): 640-643. DOI: 10.1088/1009-0630/15/7/07
    [8]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建), PENG Xiaodong (彭晓东). The electromagnetic instability in electron flow with ion background[J]. Plasma Science and Technology, 2010, 12(5): 523-528.

Catalog

    Article views (401) PDF downloads (671) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return