Advanced Search+
WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
Citation: WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08

Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure

Funds: supported by the Fundamental Research Funds of Shandong University, China (No. 2016JC016)
More Information
  • Received Date: August 10, 2015
  • In this work the effects of O2 concentration on the pulsed dielectric barrier discharge in helium-oxygen mixture at atmospheric pressure have been numerically researched by using a one-dimensional fiuid model in conjunction with the chosen key species and chemical reactions. The reliability of the used model has been examined by comparing the calculated discharge current with the reported experiments. The present work presents the following significant results. The dominative positive and negative particles are He+2 and O2, respectively, the densities of the reactive oxygen species (ROS) get their maxima nearly at the central position of the gap, and the density of the ground state O is highest in the ROS. The increase of O2 concentration results in increasingly weak discharge and the time lag of the ignition. For O2 concentrations below 1.1%, the density of O is much higher than other species, the averaged dissipated power density presents an evident increase for small O2 concentration and then the increase becomes weak. In particular, the total density of the reactive oxygen species reaches its maximums at the O2 concentration of about 0.5%. This characteristic further convinces the experimental observation that the O2 concentration of 0.5% is an optimal O2/He ratio in the inactivation of bacteria and biomolecules when radiated by using the plasmas produced in a helium oxygen mixture.
  • 1 Kong M G, Kroesen G, Morˉll G, et al. 2009, New J. Phys., 11: 115012 2 Niemi K, Reuter S, Graham L M, et al. 2010, J. Phys. D: Appl. Phys., 43: 124006 3 He J and Zhang Y T. 2012, Plasma Process. Polym., 9: 919 4 Yang A, Liu D, Rong M, et al. 2014, Phys. Plasmas, 21: 083501 5 Lu X and Laroussi M. 2006, J. Appl. Phys., 100: 063302 6 Laroussi M, Lu X, Kolobov V, et al. 2004, J. Appl. Phys., 96: 3028 7 Lu X and Laroussi M. 2008, Appl. Phys. Lett., 92: 051501 8 Walsh J L, Liu D X, Iza F, et al. 2010, J. Phys. D: Appl. Phys., 43: 032001 9 Lu X, Ye T, Cao Y, et al. 2008, J. Appl. Phys., 104: 053309 10 Nie L L, Tan Z Y, Chen B, et al. 2013, IEEE Trans. Plasma Sci., 41: 1648 11 Wang X L, Tan Z Y, Nie L L, et al. 2014, IEEE Trans. Plasma Sci., 42: 2245 12 Rauf S and Kushner M J. 1999, J. Appl. Phys., 85: 3460 13 Wang Q, Economou D J, Donnelly V M. 2006, J. Appl. Phys., 100: 023301 14 Deloche R, Monchicourt P, Cheret M, et al. 1976, Phys. Rev. A, 13: 1140 15 Golubovskii Y B, Maiorov V A, Behnke J, et al. 2003, J. Phys. D: Appl. Phys., 36: 39 16 Kim S, Lieberman M A, Lichtenberg A J, et al. 2006, J. Vac. Sci. Technol. A, 24: 2025 17 Leveille V and Coulombe S. 2005, Plasma Sources Sci. Technol., 14: 467 18 Gudmundsson J T, Kouznetsov I G, Patel K K, et al. 2001, J. Phys. D: Appl. Phys., 34: 1100 19 Stafford D S and Kushner M J. 2004, J. Appl. Phys., 96: 2451 20 Gordillo-Vazquez F J. 2008, J. Phys. D: Appl. Phys., 41: 234016 21 Hadi-Ziane S, Held B, Pignolet P, et al. 1992, J. Phys. D: Appl. Phys., 25: 677 22 Baulch D L, Cox R A, Crutzen P J, et al. 1982, J. Phys. Chem. Ref. Data, 11: 327 23 Soria C, Pontiga F, Castellanos A. 2004, Plasma Sources Sci. Technol., 13: 95 24 Kulikovsky A A. 1994, J. Phys. D: Appl. Phys., 27: 2556 25 Scharfetter D L and Gummel H K. 1969, IEEE Trans. Electron Dev., 16: 64 26 Shi H, Zhang Y H, Wang D Z. 2008, Phys. Plasmas, 15: 122306 27 Nikandrov D S, Tsendin L D, Kolobov V I, et al. 2008, IEEE Trans. Plasma Sci., 36: 131 28 Oda A, Sakai Y, Akashi H, et al. 1999, J. Phys. D: Appl. Phys., 32 : 2726 29 Nikandrov D S, Arslanbekov R R, Kolobov V I. 2008, IEEE Trans. Plasma Sci., 36 : 932 30 Liu S and Neiger M. 2001, J. Phys. D: Appl. Phys., 34: 1632 31 Laroussi M, Lu X, Kolobov V, et al. 2004, J. Appl. Phys., 96: 3028 32 Lu X and Laroussi M. 2006, J. Phys. D: Appl. Phys., 39: 1127 33 Deng X T, Shi J J and Kong M G. 2007, J. Appl. Phys., 101: 074701 34 Yu H, Perni S, Shi J J, et al. 2006, J. Appl. Microbiology, 101: 1323 35 Lichtenberg A J, Kouznetsov I G, Lee Y T, et al. 1997, Plasma Sources Sci. Technol., 6: 437
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [3]Guobao FENG (封国宝), Wanzhao CUI (崔万照), Lu LIU (刘璐). Dynamic characteristics of charging effects on the dielectric constant due to E-beam irradiation: a numerical simulation[J]. Plasma Science and Technology, 2018, 20(3): 35001-035001. DOI: 10.1088/2058-6272/aa9d0d
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [7]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [8]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [9]ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.

Catalog

    Article views (401) PDF downloads (671) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return