Advanced Search+
Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a
Citation: Jianyu FENG (冯建宇), Lifang DONG (董丽芳), Caixia LI (李彩霞), Ying LIU (刘莹), Tian DU (杜天), Fang HAO (郝芳). Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge[J]. Plasma Science and Technology, 2017, 19(5): 55401-055401. DOI: 10.1088/2058-6272/aa594a

Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge

Funds: This work was supported by National Natural Science Foun?dation of China (Nos. 11375051 and 11505044), Key Basic Research Project in the application basic research plan of Hebei Province (No. 15961105D) and the Research Foundation of Education Bureau of Hebei Province, China (No. LJRC011).
More Information
  • Received Date: August 24, 2016
  • The hollow hexagonal pattern involved in surface discharges is firstly investigated in a dielectric barrier discharge system. The spatiotemporal structures of the pattern are studied using an intensified charge-coupled device and photomultiplier. Instantaneous images taken by an intensified charge-coupled device and optical correlation measurements show that the surface discharges are induced by volume discharges. The optical signals indicate that the discharge filaments constituting the hexagonal frame discharge randomly at the first current pulse or the second pulse, once or twice. There is no interleaving of several sub-lattices, which indicates that the ‘memory’ effect is no longer in force due to surface discharges. By using the emission spectrum method, both the molecule vibration temperature and electron density of the surface discharges are larger than that of the volume discharges.
  • [1]
    Rucklidge A M, Silber M and Skeldon A C 2012 Phys. Rev. Lett. 108 074504
    [2]
    Skeldon A C and Porter J 2011 Phys. Rev. E 84 016209
    [3]
    Chen Z L et al 2011 Phys. Rev. Lett. 106 133601
    [4]
    Sinclair J and Walhout M 2012 Phys. Rev. Lett. 108 035005
    [5]
    Opaits D F et al 2008 Phys. Plasmas 15 073505
    [6]
    Babaeva N Y and Kushner M J 2014 Plasma Sources Sci. Technol. 23 065047
    [7]
    Dong L F et al 2007 Phys. Rev. E 76 046210
    [8]
    Dong L F, Fan W L and Pan Y Y 2010 Plasma Sci. Technol. 12 172
    [9]
    Dong L F et al 2013 Phys. Rev. E 87 042914
    [10]
    Dong L F et al 2012 Phys. Rev. E 85 066403
    [11]
    Dong L F et al 2012 Phys. Plasmas 19 052304
    [12]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [13]
    Zhang C et al 2014 Appl. Surf. Sci. 311 468
    [14]
    Zanin A L et al 2002 Appl. Phys. Lett. 81 3338
    [15]
    Dong L F et al 2008 Plasma Sources Sci. Technol. 17 015015
    [16]
    Herzberg G 1950 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold)
  • Related Articles

    [1]Yuyang PAN, Jianyu FENG, Caixia LI, Lifang DONG. Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge[J]. Plasma Science and Technology, 2022, 24(11): 115401. DOI: 10.1088/2058-6272/ac7c62
    [2]Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51
    [3]Songru XIE (谢松汝), Yong HE (何勇), Dingkun YUAN (袁定琨), Zhihua WANG (王智化), Sunel KUMAR, Yanqun ZHU (朱燕群), Kefa CEN (岑可法). The effects of gas flow pattern on the generation of ozone in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(5): 55505-055505. DOI: 10.1088/2058-6272/aafc50
    [4]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [5]Jiting OUYANG (欧阳吉庭), Ben LI (李犇), Feng HE (何锋), Dong DAI (戴栋). Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos[J]. Plasma Science and Technology, 2018, 20(10): 103002. DOI: 10.1088/2058-6272/aad325
    [6]Shoujie HE (何寿杰), Peng WANG (王鹏), Jing HA (哈静), Baoming ZHANG (张宝铭), Zhao ZHANG (张钊), Qing LI (李庆). Effects of discharge parameters on the micro-hollow cathode sustained glow discharge[J]. Plasma Science and Technology, 2018, 20(5): 54006-054006. DOI: 10.1088/2058-6272/aab54b
    [7]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [8]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [9]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [10]Rajneesh KUMAR, Dhiraj BORA. Experimental Study of Parameters of a Plasma Antenna[J]. Plasma Science and Technology, 2010, 12(5): 592-600.

Catalog

    Article views (327) PDF downloads (842) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return