1. |
Cui, Y., Ren, J., Wu, K. et al. Modelling the effect of deposited grid material on the power coupling of radio frequency ion thrusters. Journal of Electric Propulsion, 2025, 4(1): 2.
DOI:10.1007/s44205-025-00101-9
|
2. |
Levchenko, I., Goebel, D., Pedrini, D. et al. Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 2025.
DOI:10.1016/j.paerosci.2023.100900
|
3. |
Saifutdinova, A.A., Makushev, A.A., Gatiyatullin, F.R. et al. Simulation of the Plasma Parameters Dynamics in Iodine in an Electric Rocket Engine based on ICP Discharge. High Energy Chemistry, 2024, 58(Suppl 2): S215-S224.
DOI:10.1134/S0018143924700899
|
4. |
Saifutdinova, A.A., Makushev, A.A., Sysoev, S.S. et al. Parametric Analysis of Plasma-Chemical Processes in Electrodeless RF and Microwave Discharges in Iodine Vapor. High Energy Chemistry, 2024, 58(5): 575-582.
DOI:10.1134/S0018143924700486
|
5. |
Xu, Z., Wang, P., Cai, D. et al. Performance investigation of a low-power Hall thruster fed on iodine propellant. Plasma Science and Technology, 2024, 26(6): 065501.
DOI:10.1088/2058-6272/ad240e
|
6. |
Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123.
DOI:10.15982/j.issn.2096-9287.2024.20230036
|
|
7. |
Shu, M., Wang, G., Xu, Z. et al. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium | [碘工质射频离子推力器放电特性仿真研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(2): 125-131.
DOI:10.13922/j.cnki.cjvst.202307002
|
|
8. |
Li, X., Zeng, M., Liu, H. et al. Iodine electron cyclotron resonance plasma source for electric propulsion | [应用于电推进的碘工质电子回旋共振等离子体源]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(22): 225202.
DOI:10.7498/aps.72.20230785
|
|
9. |
Lafleur, T., Habl, L., Rossi, E.Z. et al. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, 31(11): 114001.
DOI:10.1088/1361-6595/ac9ad7
|
10. |
Ye, Z.-W., Wang, P.-Y., Hua, Z.-W. et al. Feeding Design and Experimental Study of Iodine Electric Propulsion System | [碘工质电推进系统的储供设计及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(9): 21012.
DOI:10.13675/j.cnki.tjjs.210125
|
|
11. |
Esteves, B., Marmuse, F., Drag, C. et al. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, 31(8): 085007.
DOI:10.1088/1361-6595/ac8288
|
12. |
Hua, Z., Wang, P., Ning, Z. et al. Early experimental investigation of the C12A7 hollow cathode fed on iodine. Plasma Science and Technology, 2022, 24(7): 074004.
DOI:10.1088/2058-6272/ac4fb4
|
13. |
Xu, Z., Tian, L., Ye, Z. et al. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster | [碘工质霍尔推力器原理样机设计与实验研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2022, 42(6): 456-461.
DOI:10.13922/j.cnki.cjvst.202112003
|
|
14. |
Vavilov, I.S., Fedyanin, V.V., Yachmenev, P.S. et al. Determination of the parameters of the microwave ion thruster by the calorimetric method. Journal of Physics: Conference Series, 2022, 2182(1): 012067.
DOI:10.1088/1742-6596/2182/1/012067
|
15. |
Ashby, J., Rosset, S., Henke, E.F.M. et al. One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications. Frontiers in Robotics and AI, 2022.
DOI:10.3389/frobt.2021.792831
|
16. |
ZHANG, X., ZHANG, Z., JIA, S. et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2022, 24(1): 015506.
DOI:10.1088/2058-6272/ac34e6
|
17. |
Levko, D., Raja, L.L. Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions. Journal of Applied Physics, 2021, 130(17): 173302.
DOI:10.1063/5.0063578
|
18. |
O’reilly, D., Herdrich, G., Kavanagh, D.F. Electric propulsion methods for small satellites: A review. Aerospace, 2021, 8(1): 1-30.
DOI:10.3390/aerospace8010022
|