Advanced Search+
Yu WANG (王羽), Lu QU (屈路), Tianjun SI (姒天军), Yang NI (倪阳), Jianwei XU (徐建伟), Xishan WEN (文习山). Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps[J]. Plasma Science and Technology, 2017, 19(6): 64016-064016. DOI: 10.1088/2058-6272/aa6743
Citation: Yu WANG (王羽), Lu QU (屈路), Tianjun SI (姒天军), Yang NI (倪阳), Jianwei XU (徐建伟), Xishan WEN (文习山). Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps[J]. Plasma Science and Technology, 2017, 19(6): 64016-064016. DOI: 10.1088/2058-6272/aa6743

Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps

Funds: This work is supported by the China State Grid Corp headquarters project in 2015 (SGTYHT/14-JS-188).
More Information
  • When a wind turbine is struck by lightning, its blades are usually rotating. The effect of blade rotation on a turbine’s ability to trigger a lightning strike is unclear. Therefore, an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary. A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50% discharge voltage. Lightning discharge tests of a 1:30 scale wind turbine model with 2, 4, and 6 m air gaps were performed and the discharge process was observed. The experimental results demonstrated that when a 2 m air gap was used, the breakdown voltage increased as the blade speed was increased, but when the gap length was 4 m or longer, the trend was reversed and the breakdown voltage decreased. The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region, promotes upward leader development on the blade tip, and decreases the breakdown voltage. Thus, the blade rotation of a wind turbine increases its ability to trigger lightning strikes.
  • Related Articles

    [1]Jike Liang, Mian Chen, Keke Li, Cheng Cheng, Xu Meng, Mingyan Gu, Jianjun Chu, Kaixin Xiang, Shidong Fang, Jie Shen. Study on the discharge and emission characteristics of rotating gliding arc plasma using air, ammonia, and ammonia/air mixtures[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adc5e0
    [2]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [3]Jung-Hwan IN, Youngmin MOON, Jang-Hee CHOI, Sungho JEONG. Consistency of intensity ratio between spectral lines with similar self-absorption characteristics during ungated laser induced breakdown spectroscopy measurements[J]. Plasma Science and Technology, 2019, 21(3): 34010-034010. DOI: 10.1088/2058-6272/aaed60
    [4]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [5]Ronggang WANG (王荣刚), Qizheng JI (季启政), Tongkai ZHANG (张桐恺), Qing XIA (夏清), Yu ZHANG (张宇), Jiting OUYANG (欧阳吉庭). Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 54017-054017. DOI: 10.1088/2058-6272/aaa436
    [6]CHEN Qi (陈琪), YAN Limin (闫丽敏), ZHANG Hao (张浩), LI Guoxiu (李国岫). Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields[J]. Plasma Science and Technology, 2016, 18(5): 569-576. DOI: 10.1088/1009-0630/18/5/21
    [7]CHEN She (陈赦), ZENG Rong (曾嵘), ZHUANG Chijie (庄池杰), ZHOU Xuan (周旋), DING Yujian (丁玉剑). Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge[J]. Plasma Science and Technology, 2016, 18(3): 305-310. DOI: 10.1088/1009-0630/18/3/15
    [8]MENG Guodong (孟国栋), CHENG Yonghong (成永红), DONG Chengye (董承业), WU Kai (吴锴). Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps[J]. Plasma Science and Technology, 2014, 16(12): 1083-1089. DOI: 10.1088/1009-0630/16/12/01
    [9]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.

Catalog

    Article views (341) PDF downloads (863) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return