Advanced Search+
Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
Citation: Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f

Geodesic acoustic mode in a reduced two-fluid model

Funds: This work was supported by the China National Magnetic Confinement Fusion Energy Research Project under Grant No. 2015GB120005, and National Natural Science Foundation of China No. 11275260.
More Information
  • Received Date: August 09, 2017
  • A reduced two-fluid model is constructed to investigate the geodesic acoustic mode (GAM). The ion dynamics is sufficiently considered by including an anisotropic pressure tensor and inhibited heat flux vector, whose evolutions are determined by equations derived from the 16-momentum model. Electrons are supposed to obey the Boltzmann distribution responding to the electrostatic oscillation with near ion acoustic velocity. In the large safety factor limit, the GAM frequency is identical with the kinetic one to the order of 1/ q2 when zeroing the anisotropy. For general anisotropy, the reduced two-fluid model generates the frequency agreeing well with the kinetic result with arbitrary electron temperature. The present simplified fluid model will be of great use and interest for young researchers and students devoted to plasma physics.
  • [1]
    Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
    [2]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35
    [3]
    Itoh K, Hallatschek K and Itoh S I 2005 Plasma Phys. Control. Fusion 47 451
    [4]
    Wahlberg C 2008 Phys. Rev. Lett. 101 115003
    [5]
    Qiu Z, Chen L and Zonca F 2014 Nucl. Fusion 54 033010
    [6]
    Ren H and Cao J 2015 Phys. Plasmas 22 062501
    [7]
    Lebedev V B et al 1996 Phys. Plasmas 3 3023
    [8]
    Sugama H and Watanabe T H 2006 J. Plasma Physics 72 825
    [9]
    Smolyakov A I et al 2008 Phys. Lett. A 372 6750
    [10]
    Kolesnichenko Y I, Lepiavko B S and Yakovenko Y V 2012 Plasma Phys. Control. Fusion 54 105001
    [11]
    Sgalla R J F et al 2013 Phys. Letts. A 377 303
    [12]
    Sgalla R J F 2015 Phys. Plasmas 22 022502
    [13]
    Storelli A et al 2015 Phys. Plasmas 22 062508
    [14]
    Singh R and Gürcan ? D 2017 Phys. Plasmas 24 022507
    [15]
    Ren H 2014 Phys. Plasmas 21 044505
    [16]
    Ren H 2015 Phys. Plasmas 22 102505
    [17]
    Dorf M A et al 2013 Nucl. Fusion 53 063015
    [18]
    Ramos J J 2003 Phys. Plasmas 10 3601
    [19]
    Ramos J J 2005 Phys. Plasmas 12 052102
    [20]
    Ren H 2014 Phys. Plasmas 21 064502
    [21]
    Gao Z et al 2008 Phys. Plasmas 15 072511
    [22]
    Ren H 2015 Phys. Plasmas 22 072502
    [23]
    Fasoli A et al 2007 Nucl. Fusion 47 S264
  • Related Articles

    [1]Weikang TANG, Qibin LUAN, Hongen SUN, Lai WEI, Shuangshuang LU, Shuai JIANG, Jian XU, Zhengxiong WANG. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model[J]. Plasma Science and Technology, 2023, 25(4): 045103. DOI: 10.1088/2058-6272/aca372
    [2]Yaoyu XIE (谢耀禹), Kaijun ZHAO (赵开君), Zhipeng CHEN (陈志鹏), Jiaqi DONG (董家齐), Kimitaka ITOH, Zhongyong CHEN (陈忠勇), Yuejiang SHI (石跃江), Yonghua DING (丁永华), Jun CHENG (程钧), Longwen YAN (严龙文), Hai LIU (刘海), Zhifeng CHENG (程芝峰), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Lu WANG (王璐), Jianqiang XU (许健强), Yunfeng LIANG (梁云峰), J-TEXT Team. Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105102. DOI: 10.1088/2058-6272/ac0ccd
    [3]K J ZHAO (赵开君), J Q DONG (董家齐), J Q LI (李继全), LW YAN (严龙文). A brief review: experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94006-094006. DOI: 10.1088/2058-6272/aad382
    [4]Zhiyong QIU, Liu CHEN, Fulvio ZONCA. Kinetic theory of geodesic acoustic modes in toroidal plasmas: a brief review[J]. Plasma Science and Technology, 2018, 20(9): 94004-094004. DOI: 10.1088/2058-6272/aab4f0
    [5]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [6]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [7]LI Zebin (李泽彬), SUN Guoya (孙国亚), Ihor HOLOD, XIAO Yong (肖湧), et al. GTC Simulation of Ideal Ballooning Mode in Tokamak Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 499-505. DOI: 10.1088/1009-0630/15/6/03
    [8]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
    [9]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.

Catalog

    Article views (283) PDF downloads (499) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return