Advanced Search+
Hong ZHAO (赵红), Chengwu YI (依成武), Rongjie YI (依蓉婕), Huijuan WANG (王慧娟), Lanlan YIN (尹兰兰), I N MUHAMMAD, Zhongfei MA (马中飞). Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge[J]. Plasma Science and Technology, 2018, 20(3): 35503-035503. DOI: 10.1088/2058-6272/aa97d1
Citation: Hong ZHAO (赵红), Chengwu YI (依成武), Rongjie YI (依蓉婕), Huijuan WANG (王慧娟), Lanlan YIN (尹兰兰), I N MUHAMMAD, Zhongfei MA (马中飞). Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge[J]. Plasma Science and Technology, 2018, 20(3): 35503-035503. DOI: 10.1088/2058-6272/aa97d1

Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge

Funds: This work was supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province, China (Grant No. BE2011732); the Science and Technology Support Project Plan and Social Development of Zhenjiang city, China (Grant No. SH2012013).
More Information
  • Received Date: September 17, 2017
  • The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet–visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions (CO32-) and bicarbonate ions (HCO3- ) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.
  • [1]
    Ustun I et al 2015 Food Anal. Methods 8 222
    [2]
    Gao D W et al 2014 Chemosphere 95 24
    [3]
    Li R L et al 2017 Mar. Pollut. Bull. 122 38
    [4]
    Chen R et al 2014 J. Environ. Sci. 26 2340
    [5]
    Paxéus N 1996 Water Res. 30 1115
    [6]
    Roslev P et al 2007 Water Res. 41 969
    [7]
    Venkata M S et al 2007 J. Hazard. Mater. 146 278
    [8]
    Wu J et al 2010 AIChE J. 56 2699
    [9]
    Kabda?l? I et al 2016 Desalin. Water Treat. 57 26165
    [10]
    Zhang X H et al 2016 Biomed. Res. Int. 2016 5178697
    [11]
    Wu D L et al 2008 J. Environ. Sci. 20 922
    [12]
    Bai M D et al 2008 Plasma Sci. Technol. 10 463
    [13]
    Tao X M et al 2011 Prog. Energy Combust. Sci. 37 113
    [14]
    Bai X Y et al 2000 Physics 29 615 (in Chinese)
    [15]
    Bai M D et al 2012 Plasma Chem. Plasma Process. 32 693
    [16]
    Napartovich A P 2001 Plasmas Polym. 6 1
    [17]
    Bauer G et al 2010 J. Phys.: Conf. Ser. 219 022042
    [18]
    Li Y et al 2017 J. Environ. Sci. 53 238
    [19]
    Li Y et al 2016 Plasma Sci. Technol. 18 173
    [20]
    Bernie M P, Norman B J and Mark C H 1997 Japan. J. Appl. Phys. 36 5007
    [21]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [22]
    Zhang Z T et al 2005 Plasma Sci. Technol. 7 3025
    [23]
    Shinde S S, Bhosale C H and Rajpure K Y 2012 J. Photochem. Photobiol. B 116 66
    [24]
    Wu M H et al 2011 Radiat. Phys. Chem. 80 420
    [25]
    Balabanovich A I and Schnabel W 1998 J. Photochem. Photobiol. A 113 145
    [26]
    Wu D L et al 2007 J. Environ. Sci. 19 1252
    [27]
    Liu Y et al 2013 Environ. Sci. Technol. 47 2670
  • Related Articles

    [1]R PAUL, K DEKA, G SHARMA, R MOULICK, S ADHIKARI, S S KAUSIK, B K SAIKIA. Study of a collisionless magnetized plasma sheath with nonextensively distributed species[J]. Plasma Science and Technology, 2023, 25(12): 125001. DOI: 10.1088/2058-6272/ace1d4
    [2]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [3]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [4]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [5]Wei ZHONG (钟伟), AoXU (徐翱), Yunlong LIU (刘云龙), Lei CHEN (陈磊). Visualization of particulates distribution from electrode erosion[J]. Plasma Science and Technology, 2018, 20(2): 25502-025502. DOI: 10.1088/2058-6272/aa9327
    [6]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [7]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [8]Y WANG (王宇), G ZHAO (赵高), C NIU (牛晨), Z W LIU (刘忠伟), J T OUYANG (欧阳吉庭), Q CHEN (陈强). Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field[J]. Plasma Science and Technology, 2017, 19(2): 24003-024003. DOI: 10.1088/2058-6272/19/2/024003
    [9]JIAO Zhihong (焦志宏), WANG Guoli (王国利), ZHOU Xiaoxin (周效信), WU Chaohui (吴朝辉), ZUO Yanlei (左言磊), ZENG Xiaoming (曾小明), ZHOU Kainan (周凯南), SU Jingqin (粟敬钦). Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse[J]. Plasma Science and Technology, 2016, 18(12): 1169-1174. DOI: 10.1088/1009-0630/18/12/05
    [10]XIANG Nong, HU Yemin, OU Jing. Bohm criterion for collisionless sheaths in two-ion-species plasmas[J]. Plasma Science and Technology, 2011, 13(4): 385-391.
  • Cited by

    Periodical cited type(7)

    1. Lin, Y., Wang, X., Zhou, H. et al. Surface damage mechanism and evolution of Al-Zn-Mg-Cu alloy as a sliding electrical contact material under extreme environments. Wear, 2025. DOI:10.1016/j.wear.2025.205995
    2. Wang, M., Wang, Q., Wang, J. et al. Research on Muzzle Arc in Ultra High Speed Air Flow. 2024.
    3. Yu, Y.L., Chen, Z.Y., Xia, S.G. et al. Design an arc suppression system for the Electromagnetic Pellet Injection System. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2023.114100
    4. Beilis, I.I.. Magnetoplasmadynamic acceleration of solid body in a railgun. Journal of Electric Propulsion, 2023, 2(1): 15. DOI:10.1007/s44205-023-00050-1
    5. Beilis, I.I.. Plasma Energy Loss by Cathode Heat Conduction in a Vacuum Arc: Cathode Effective Voltage. Plasma, 2023, 6(3): 492-502. DOI:10.3390/plasma6030034
    6. Beilis, I.I.. Electrodynamic Acceleration of a Dielectric Body by Arc Plasma in a System of Railgun Configuration. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2023. DOI:10.23919/ISDEIV55268.2023.10199638
    7. Wang, X., Li, Y., Shi, Z. et al. Research on Vehicle-Mounted Electromagnetic Ejection Remote Fire Extinguishing System. Mathematical Problems in Engineering, 2022. DOI:10.1155/2022/2129942

    Other cited types(0)

Catalog

    Article views (231) PDF downloads (744) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return