Advanced Search+
Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a
Citation: Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a

Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

Funds: This work was partially supported by the Fundamental Research Funds for the Central Universities (2017B15214), the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities (16CCJG01Z004), the Changzhou Science and Technology Program (CJ20160027), National Natural Science Foundation of China (11274092, 61705058) and the Natural Science Foundation of the Jiangsu Province (BK20170302).
More Information
  • Received Date: June 11, 2017
  • Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·),ozone (O3), and nitrogen oxides (NOx), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO 2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l -1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.
  • [1]
    Lu X P et al 2016 Phys. Rep. 630 1
    [2]
    Samukawa S et al 2012 J. Phys. D: Appl. Phys. 45 253001
    [3]
    Bruggeman P and Leys C 2009 J. Phys. D: Appl. Phys. 42 053001
    [4]
    Lu X P et al 2011 Sci. Sin. Phys., Mech. Astron. 41 801 (in Chinese)
    [5]
    Tijani J O et al 2014 Water Air Soil Pollut. 225 2102
    [6]
    Martínková L et al 2009 Environ. Int. 35 162
    [7]
    Pǎcurariu C et al 2013 Chem. Eng. J. 222 218
    [8]
    Han Y X et al 2013 J. Environ. Manage. 118 196
    [9]
    Chen B Y et al 2016 Plasma Sci. Technol. 18 41
    [10]
    Chen B Y et al 2016 IEEE Trans. Plasma Sci. 44 3369
    [11]
    Chen B Y et al 2016 Plasma Sci. Technol. 18 278
    [12]
    Jiang N et al 2013 J. Hazard. Mater. 262 387
    [13]
    Chen B Y et al 2014 Plasma Sci. Technol. 16 1126
    [14]
    Kong M G and Liu D X 2014 High Voltage Eng. 40 2956 (in Chinese)
    [15]
    Anderson H R 2017 Lancet Respir. Med. 5 916
    [16]
    Amini H et al 2017 Atmos. Environ. 171 1
    [17]
    Colman Lerner J E et al 2012 Atmos. Environ. 55 440
    [18]
    Zhang X Y et al 2017 J. Hazard. Mater. 338 102
    [19]
    Salthammer T 2015 Int. J. Hygiene Environ. Health 218 433
    [20]
    Chin P, Yang L P and Ollis D F 2006 J. Catal. 237 29
    [21]
    Vildozo D et al 2011 Appl. Catal. B 107 347
    [22]
    Huang S D et al 2017 Sci. Total Environ. 590–591 394
    [23]
    Hauptmann M et al 2004 Am. J. Epidemiol. 159 1117
    [24]
    Park C W et al 2011 Sep. Purif. Technol. 77 87
    [25]
    Jiang N et al 2016 Appl. Catal. B 184 355
    [26]
    Zhu X B et al 2015 Appl. Catal. B 170 293
    [27]
    Shao T et al 2011 Appl. Phys. Lett. 98 021503
    [28]
    Whitehead J C 2016 J. Phys. D: Appl. Phys. 49 243001
    [29]
    Shao T et al 2012 Vacuum 86 876
    [30]
    YangX L,BaiMD andHanF2009 Water Environ. Res. 81 450
    [31]
    Lin Q F et al 2014 Plasma Sci. Technol. 16 1036
    [32]
    Portela R et al 2017 Chem. Eng. J. 310 560
    [33]
    Lu Y W et al 2014 Build. Environ. 81 42
    [34]
    Wu F et al 2017 Build. Environ. 115 25
    [35]
    Liu Y and Zhang P Y 2017 Appl. Catal. A 530 102
    [36]
    Gopi T et al 2017 Catal. Commun. 92 51
    [37]
    Li T P et al 2016 J. Plant Physiol. 195 73
    [38]
    Pan L Y et al 2017 Catal. Commun. 97 70
    [39]
    Buntat Z, Smith I R and Razali N A M 2009 J. Phys. D: Appl. Phys. 42 235202
    [40]
    Fang Z et al 2016 Plasma Sources Sci. Technol. 25 01LT01
    [41]
    Wang Y Y et al 2017 Plasma Sci. Technol. 19 025503
    [42]
    Li D et al 2016 IEEE Trans. Plasma Sci. 44 2648
    [43]
    Li X Y et al 2004 Acta Opt. Sin. 24 1051
    [44]
    Chen L et al 2012 Thin Solid Films 521 226
    [45]
    Abdelaziz A A et al 2013 J. Hazard. Mater. 246–247 26
    [46]
    Schütze A et al 1998 IEEE Trans. Plasma Sci. 26 1685
    [47]
    Yoon J S et al 2014 Phys. Rep. 543 199
    [48]
    Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201
    [49]
    Penetrante B M et al 1997 Plasma Sources Sci. Technol. 6 251
    [50]
    Haddouche A and Lemerini M 2015 Plasma Sci. Technol. 17 589
    [51]
    Tas M A, Hardeveld R V and Veldhuizen E M V 1997 Plasma Chem. Plasma Process. 17 371
    [52]
    Bagheri M and Mohseni M 2014 Chem. Eng. J. 256 51
    [53]
    P?ter G et al 2000 Atmos. Environ. 34 4019
    [54]
    WangXY,WangHXandWang SL2010 Atmos. Environ. 44 2074
    [55]
    Herman R G et al 1997 Catal. Today 37 1
    [56]
    Zhao Y C et al 2007 J. Mol. Struct.—Theochem. 818 155
    [57]
    Mohan B, Cui X and Chua K J 2017 Proc. Eng. 180 1372
    [58]
    Qi H, Sun D Z and Chi G Q 2007 J. Environ. Sci.—China 1136
    [59]
    Shih K Y and Bruce R 2011 IEEE Trans. Plasma Sci. 39 883
    [60]
    Legrini O, Oliveros E and Braun A M 1993 Chem. Rev. 93 671
    [61]
    Ponnivalavan B et al 2013 Energy 63 252
    [62]
    Ebeling W 1974 Physica 73 573
    [63]
    Chen K 2013 Plasmadynamic and Lasers Conf. vol 29, p 28.1
    [64]
    Li Q et al 2016 J. Petrol. Sci. Eng. 146 694
    [65]
    Cooper W S III and Kunkel W B 1965 Phys. Rev. 138 A1022
    [66]
    Lenzen S 2017 BBA—Gen. Subjects 1861 1929
    [67]
    Laporta V, Heritier K L and Panesi M 2016 Chem. Phys. 472 44
    [68]
    Anokhin E M et al 2017 Combust. Flame 185 301
  • Related Articles

    [1]Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0
    [2]Renchuan HE, Xiaoyi YANG, Chijie XIAO, Xiaogang WANG, Tianchao XU, Zhibin GUO, Yue GE, Xiuming YU, Zuyu ZHANG, Rui KE, Ruixin YUAN. Experimental observation of the transport induced by ion Bernstein waves near the separatrix of magnetic nulls[J]. Plasma Science and Technology, 2022, 24(11): 115001. DOI: 10.1088/2058-6272/ac770b
    [3]Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4
    [4]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [5]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [6]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [7]Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18

Catalog

    Article views (304) PDF downloads (550) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return