Advanced Search+
Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a
Citation: Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a

Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

Funds: This work was partially supported by the Fundamental Research Funds for the Central Universities (2017B15214), the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities (16CCJG01Z004), the Changzhou Science and Technology Program (CJ20160027), National Natural Science Foundation of China (11274092, 61705058) and the Natural Science Foundation of the Jiangsu Province (BK20170302).
More Information
  • Received Date: June 11, 2017
  • Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·),ozone (O3), and nitrogen oxides (NOx), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO 2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l -1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.
  • [1]
    Lu X P et al 2016 Phys. Rep. 630 1
    [2]
    Samukawa S et al 2012 J. Phys. D: Appl. Phys. 45 253001
    [3]
    Bruggeman P and Leys C 2009 J. Phys. D: Appl. Phys. 42 053001
    [4]
    Lu X P et al 2011 Sci. Sin. Phys., Mech. Astron. 41 801 (in Chinese)
    [5]
    Tijani J O et al 2014 Water Air Soil Pollut. 225 2102
    [6]
    Martínková L et al 2009 Environ. Int. 35 162
    [7]
    Pǎcurariu C et al 2013 Chem. Eng. J. 222 218
    [8]
    Han Y X et al 2013 J. Environ. Manage. 118 196
    [9]
    Chen B Y et al 2016 Plasma Sci. Technol. 18 41
    [10]
    Chen B Y et al 2016 IEEE Trans. Plasma Sci. 44 3369
    [11]
    Chen B Y et al 2016 Plasma Sci. Technol. 18 278
    [12]
    Jiang N et al 2013 J. Hazard. Mater. 262 387
    [13]
    Chen B Y et al 2014 Plasma Sci. Technol. 16 1126
    [14]
    Kong M G and Liu D X 2014 High Voltage Eng. 40 2956 (in Chinese)
    [15]
    Anderson H R 2017 Lancet Respir. Med. 5 916
    [16]
    Amini H et al 2017 Atmos. Environ. 171 1
    [17]
    Colman Lerner J E et al 2012 Atmos. Environ. 55 440
    [18]
    Zhang X Y et al 2017 J. Hazard. Mater. 338 102
    [19]
    Salthammer T 2015 Int. J. Hygiene Environ. Health 218 433
    [20]
    Chin P, Yang L P and Ollis D F 2006 J. Catal. 237 29
    [21]
    Vildozo D et al 2011 Appl. Catal. B 107 347
    [22]
    Huang S D et al 2017 Sci. Total Environ. 590–591 394
    [23]
    Hauptmann M et al 2004 Am. J. Epidemiol. 159 1117
    [24]
    Park C W et al 2011 Sep. Purif. Technol. 77 87
    [25]
    Jiang N et al 2016 Appl. Catal. B 184 355
    [26]
    Zhu X B et al 2015 Appl. Catal. B 170 293
    [27]
    Shao T et al 2011 Appl. Phys. Lett. 98 021503
    [28]
    Whitehead J C 2016 J. Phys. D: Appl. Phys. 49 243001
    [29]
    Shao T et al 2012 Vacuum 86 876
    [30]
    YangX L,BaiMD andHanF2009 Water Environ. Res. 81 450
    [31]
    Lin Q F et al 2014 Plasma Sci. Technol. 16 1036
    [32]
    Portela R et al 2017 Chem. Eng. J. 310 560
    [33]
    Lu Y W et al 2014 Build. Environ. 81 42
    [34]
    Wu F et al 2017 Build. Environ. 115 25
    [35]
    Liu Y and Zhang P Y 2017 Appl. Catal. A 530 102
    [36]
    Gopi T et al 2017 Catal. Commun. 92 51
    [37]
    Li T P et al 2016 J. Plant Physiol. 195 73
    [38]
    Pan L Y et al 2017 Catal. Commun. 97 70
    [39]
    Buntat Z, Smith I R and Razali N A M 2009 J. Phys. D: Appl. Phys. 42 235202
    [40]
    Fang Z et al 2016 Plasma Sources Sci. Technol. 25 01LT01
    [41]
    Wang Y Y et al 2017 Plasma Sci. Technol. 19 025503
    [42]
    Li D et al 2016 IEEE Trans. Plasma Sci. 44 2648
    [43]
    Li X Y et al 2004 Acta Opt. Sin. 24 1051
    [44]
    Chen L et al 2012 Thin Solid Films 521 226
    [45]
    Abdelaziz A A et al 2013 J. Hazard. Mater. 246–247 26
    [46]
    Schütze A et al 1998 IEEE Trans. Plasma Sci. 26 1685
    [47]
    Yoon J S et al 2014 Phys. Rep. 543 199
    [48]
    Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201
    [49]
    Penetrante B M et al 1997 Plasma Sources Sci. Technol. 6 251
    [50]
    Haddouche A and Lemerini M 2015 Plasma Sci. Technol. 17 589
    [51]
    Tas M A, Hardeveld R V and Veldhuizen E M V 1997 Plasma Chem. Plasma Process. 17 371
    [52]
    Bagheri M and Mohseni M 2014 Chem. Eng. J. 256 51
    [53]
    P?ter G et al 2000 Atmos. Environ. 34 4019
    [54]
    WangXY,WangHXandWang SL2010 Atmos. Environ. 44 2074
    [55]
    Herman R G et al 1997 Catal. Today 37 1
    [56]
    Zhao Y C et al 2007 J. Mol. Struct.—Theochem. 818 155
    [57]
    Mohan B, Cui X and Chua K J 2017 Proc. Eng. 180 1372
    [58]
    Qi H, Sun D Z and Chi G Q 2007 J. Environ. Sci.—China 1136
    [59]
    Shih K Y and Bruce R 2011 IEEE Trans. Plasma Sci. 39 883
    [60]
    Legrini O, Oliveros E and Braun A M 1993 Chem. Rev. 93 671
    [61]
    Ponnivalavan B et al 2013 Energy 63 252
    [62]
    Ebeling W 1974 Physica 73 573
    [63]
    Chen K 2013 Plasmadynamic and Lasers Conf. vol 29, p 28.1
    [64]
    Li Q et al 2016 J. Petrol. Sci. Eng. 146 694
    [65]
    Cooper W S III and Kunkel W B 1965 Phys. Rev. 138 A1022
    [66]
    Lenzen S 2017 BBA—Gen. Subjects 1861 1929
    [67]
    Laporta V, Heritier K L and Panesi M 2016 Chem. Phys. 472 44
    [68]
    Anokhin E M et al 2017 Combust. Flame 185 301
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (304) PDF downloads (550) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return