Advanced Search+
Nan ZHAO (赵楠), Ning YAN (颜宁), Guosheng XU (徐国盛), Zhengxiong WANG (王正汹), Ran CHEN (陈冉), Huiqian WANG (汪惠乾), Liang WANG (王亮), Siye DING (丁斯晔), Linming SHAO (邵林明), Liang CHEN (陈良), Guanghai HU (胡广海), Wei ZHANG (张炜). The observation of small ELM post-cursor mode in EAST[J]. Plasma Science and Technology, 2018, 20(2): 24007-024007. DOI: 10.1088/2058-6272/aa9bd8
Citation: Nan ZHAO (赵楠), Ning YAN (颜宁), Guosheng XU (徐国盛), Zhengxiong WANG (王正汹), Ran CHEN (陈冉), Huiqian WANG (汪惠乾), Liang WANG (王亮), Siye DING (丁斯晔), Linming SHAO (邵林明), Liang CHEN (陈良), Guanghai HU (胡广海), Wei ZHANG (张炜). The observation of small ELM post-cursor mode in EAST[J]. Plasma Science and Technology, 2018, 20(2): 24007-024007. DOI: 10.1088/2058-6272/aa9bd8

The observation of small ELM post-cursor mode in EAST

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China under Grant Nos. 2015GB101000, 2014GB124000, National Natural Science Foundation of China under Grant Nos. 11322549, 11422546, 11505222, 11505220 and the Sino Danish Center for Education and Research.
More Information
  • Received Date: July 18, 2017
  • A ‘post-cursor’ quasi-coherent mode with frequency ~50 kHz has been observed following the crash of small edge localized modes (ELMs) in the Experimental Advanced Superconducting Tokamak by using a reciprocating Langmuir probe system inserted at the outboard midplane. This mode with strong potential and magnetic perturbations propagates in the electron-diamagnetic drift direction in the laboratory frame. In addition, these quasi-coherent fluctuations appear to be modulated by a MHD mode with lower frequency (~5kHz).The bi-coherence analysis shows that the post-cursor mode and the MHD mode have nonlinear interaction through three-wave coupling. The understanding on post-cursor mode can enhance our knowledge of ELMs and pedestal physics, and give new insight into the ELM process itself.
  • [1]
    ITER Physics Expert Groups on Con?nement and Transport C et al 1999 Nucl. Fusion 39 2175
    [2]
    Zohm H 1996 Plasma Phys. Control. Fusion 38 105
    [3]
    Hill D N 1997 J. Nucl. Mater. 241–243 182
    [4]
    Snyder P B et al 2002 Phys. Plasmas 9 2037
    [5]
    Suttrop W 2000 Plasma Phys. Control. Fusion 42 A1
    [6]
    Doyle E J et al 2007 Nucl. Fusion 47 S18
    [7]
    Kirk A et al 2004 Phys. Rev. Lett. 92 245002
    [8]
    Leonard A W et al 1999 J. Nucl. Mater. 266 109
    [9]
    Janeschitz G et al 2001 J. Nucl. Mater. 290 1
    [10]
    Federici G et al 2001 Nucl. Fusion 41 1967
    [11]
    Loarte A et al 2003 J. Nucl. Mater. 313 962
    [12]
    Loarte A et al 2003 Plasma Phys. Control. Fusion 45 1549
    [13]
    Connor J W 1998 Plasma Phys. Control. Fusion 40 531
    [14]
    Connor J W 1998 Plasma Phys. Control. Fusion 40 191
    [15]
    Colton A L et al 1996 Plasma Phys. Control. Fusion 38 1359
    [16]
    Zohm H et al 1995 Nucl. Fusion 35 543
    [17]
    Oyama N et al 2001 Plasma Phys. Control. Fusion 43 717
    [18]
    Maszl C et al 2011 J. Nucl. Mater. 415 S451
    [19]
    Koslowski H R et al 2005 Nucl. Fusion 45 201
    [20]
    Neuhauser J et al 2008 Nucl. Fusion 48 045005
    [21]
    Zhang W et al 2010 Rev. Sci. Instrum. 81 113501
    [22]
    Zhang X et al 2011 Plasma Sci. Technol. 13 172
    [23]
    Diamond P H et al 2000 Phys. Rev. Lett. 84 4842
    [24]
    Hidalgo C et al 1999 Phys. Rev. Lett. 83 2203
    [25]
    Hidalgo C et al 1993 Phys. Rev. Lett. 71 3127
  • Related Articles

    [1]Ping WANG, Guanghai HU, Liang WANG, Ning YAN, Xiaoming ZHONG, Guosheng XU, Xi FENG, Yang YE, Genfan DING, Lin YU, Adi LIU, Yanmin DUAN, Erzhong LI, Liqing XU, Haiqing LIU, Rui DING, Bin ZHANG, Miaohui LI, Bojiang DING, Chengming QIN, Xinjun ZHANG, Xiaojie WANG, Bo LYU, Ling ZHANG, Mingfu WU, Qing ZANG, Xin LIN, Xiaolan ZOU, Yuntao SONG. Blob properties in I-mode and ELM-free H-mode compared to L-mode on EAST[J]. Plasma Science and Technology, 2023, 25(4): 045106. DOI: 10.1088/2058-6272/aca741
    [2]Jiquan ZHAO (赵济全), Youwen SUN (孙有文), Nan CHU (楚南), Tonghui SHI (石同辉), Qun MA (马群), Yumin WANG (王嵎民), Kaiyang HE (何开洋), Youjun HU (胡友俊), EAST Team. Suppression and mitigation of inter-ELM high-frequency Alfvén-like mode by resonant magnetic perturbation in EAST[J]. Plasma Science and Technology, 2021, 23(9): 95101-095101. DOI: 10.1088/2058-6272/ac06b8
    [3]Bang LI (李邦), Tingfeng MING (明廷凤), Qing ZHUANG (庄清), Feifei LONG (龙飞飞), Shanlu GAO (高善露), Qiqi SHI (石奇奇), Yumin WANG (王嵎民), Xiaoju LIU (刘晓菊), Shaocheng LIU (刘少承), Long ZENG (曾龙), Xiang GAO (高翔). Experimental study of ELM-induced filament structures using the VUV imaging system on EAST[J]. Plasma Science and Technology, 2021, 23(3): 35104-035104. DOI: 10.1088/2058-6272/abda9d
    [4]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [5]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [6]Xianzu GONG (龚先祖), Baonian WAN (万宝年), Jiangang LI (李建刚), Jinping QIAN (钱金平), Erzhong LI (李二众), Fukun LIU (刘甫坤), Yanping ZHAO (赵燕平), Mao WANG (王茂), Handong XU (徐旵东), A M GAROFALO, Annika EKEDAH, Siye DING (丁斯晔), Juan HUANG (黄娟), Ling ZHANG (张凌), Qing ZANG (臧庆), Haiqing LIU (刘海庆), Long ZENG (曾龙), Shiyao LIN (林士耀), Biao SHEN (沈飙), Bin ZHANG (张斌), Linming SHAO (邵林明), Bingjia XIAO (肖炳甲), Jiansheng HU (胡建生), Chundong HU (胡纯栋), Liqun HU (胡立群), Liang WANG (王亮), Youwen SUN (孙有文), Guosheng XU (徐国盛), Yunfeng LIANG (梁云峰), Nong XIANG (项农), EAST Team. Realization of minute-long steady-state H-mode discharges on EAST[J]. Plasma Science and Technology, 2017, 19(3): 32001-032001. DOI: 10.1088/2058-6272/19/3/032001
    [7]FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02
    [8]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [9]Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02
    [10]GAO Zhe. Analytical Theory of the Geodesic Acoustic Mode in the Small and Large Orbit Drift Width Limits and its Application in a Study of Plasma Shaping Effect[J]. Plasma Science and Technology, 2011, 13(1): 15-20.
  • Cited by

    Periodical cited type(11)

    1. Shentu, L., Peng, D., Xi, J. A novel neural network architecture dedicated for LIBS spectrum analysis with its application to steel pipe classification. Measurement Science and Technology, 2025, 36(1): 015215. DOI:10.1088/1361-6501/ad9166
    2. Xu, X., Liu, J., Cui, F. et al. Research progress in classified recycling technology and application of scrap metals | [废旧金属分类回收技术及应用研究进展]. Yejin Fenxi/Metallurgical Analysis, 2024, 44(10): 31-37. DOI:10.13228/j.boyuan.issn1000-7571.012434
    3. Jeon, G., Kim, S., Kim, Y.J. et al. Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy. Analytical Methods, 2024, 16(37): 6349-6355. DOI:10.1039/d4ay01331j
    4. Fan, B., Qin, X., Wu, Q. et al. Instance segmentation algorithm for sorting dismantling components of end-of-life vehicles. Engineering Applications of Artificial Intelligence, 2024. DOI:10.1016/j.engappai.2024.108318
    5. Srivastava, E., Kim, H., Lee, J. et al. Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials. Applied Spectroscopy, 2023, 77(6): 603-615. DOI:10.1177/00037028231170234
    6. Song, J., Qin, X., Lyu, Q. et al. Classification study of composite insulator chemical formulations based on laser-induced breakdown spectroscopy. Electrical Engineering, 2023, 105(3): 1775-1782. DOI:10.1007/s00202-023-01771-0
    7. Bai, W., Chen, W., Yang, C. et al. Fine Classification Method of Stainless Steel Based on LIBS Technology | [基于 LIBS 技术的不锈钢精细分类方法]. Laser and Optoelectronics Progress, 2022, 59(24): 2330001. DOI:10.3788/LOP202259.2330001
    8. Hou, J., Wang, Y. Rapid identification of rice seed based on inverse Fourier transform of laser-induced breakdown spectroscopy. Optoelectronics Letters, 2022, 18(8): 495-501. DOI:10.1007/s11801-022-1137-3
    9. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    10. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2020, 35(11): 2410-2474. DOI:10.1039/d0ja90067b
    11. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (280) PDF downloads (604) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return