Advanced Search+
Hang LI (李航), Xiang GAO (高翔), Guoqiang LI (李国强), Zhengping LUO (罗正平), Damao YAO (姚达毛), Yong GUO (郭勇). Design of snowflake-diverted equilibria of CFETR[J]. Plasma Science and Technology, 2018, 20(3): 35102-035102. DOI: 10.1088/2058-6272/aa9e83
Citation: Hang LI (李航), Xiang GAO (高翔), Guoqiang LI (李国强), Zhengping LUO (罗正平), Damao YAO (姚达毛), Yong GUO (郭勇). Design of snowflake-diverted equilibria of CFETR[J]. Plasma Science and Technology, 2018, 20(3): 35102-035102. DOI: 10.1088/2058-6272/aa9e83

Design of snowflake-diverted equilibria of CFETR

Funds: This work was supported by the National Magnetic Confinement Fusion Program under grant nos 2014GB106001, 2014GB110003 and 2013GB111000, and by National Natural Science Foundation of China under grant no. 11675221.
More Information
  • Received Date: October 17, 2017
  • The Chinese Fusion Engineering Test Reactor (CFETR) represents the next generation of full superconducting fusion reactors in China. Recently, CFETR was redesigned with a larger size and will be operated in two phases. To reduce the heat flux on the target plate, a snowflake (SF) divertor configuration is proposed. In this paper we show that by adding two dedicated poloidal field (PF) coils, the SF configuration can be achieved in both phases. The equilibria were calculated by TEQ code for a range of self-inductances li3. The coil currents were calculated at some fiducial points in the flattop phase. The results indicate that the PF coil system has the ability to maintain a long flattop phase in 7.5 and 10 MA inductive scenarios for the single null divertor (SND) and SF divertor configurations. The properties of the SF configuration were also analyzed. The connection length and flux expansion of the SF divertor were both increased significantly over the SND.
  • [1]
    Wan Y X et al 2017 Nucl. Fusion 57 102009
    [2]
    Mao S F et al 2015 J. Nucl. Mater. 463 1233
    [3]
    Luo Z P et al 2014 IEEE Trans. Plasma Sci. 42 1021
    [4]
    Li H et al 2017 Fusion Eng. Des. 121 117
    [5]
    Ryutov D D 2007 Phys. Plasmas 14 064502
    [6]
    Kessel C E et al 2009 Nucl. Fusion 49 085034
    [7]
    Elahi A S and Ghoranneviss M 2010 J. Fusion Energy 29 76
    [8]
    Samaddar D et al 2013 J. Phys.: Conf. Ser. 410 012032
    [9]
    Nassi M 1993 Fusion Technol. 24 50
    [10]
    Piras F et al 2010 Phys. Rev. Lett. 105 155003
    [11]
    Ryutov D D and Soukhanovskii V A 2015 Phys. Plasmas 22 110901
    [12]
    Soukhanovskii V A et al 2011 J. Nucl. Mater. 415 S365
    [13]
    Piras F et al 2009 Plasma Phys. Controlled Fusion 51 055009
    [14]
    Eich T et al 2011 Phys. Rev. Lett. 107 215001
    [15]
    Reimerdes H et al 2013 Plasma Phys. Controlled Fusion 55 124027
    [16]
    Lunt T et al 2014 Plasma Phys. Controlled Fusion 56 035009
    [17]
    Vijvers W A J et al 2014 Nucl. Fusion 54 023009
    [18]
    Wesson J 1989 Phys. Today 42 78
  • Related Articles

    [1]Xiaokang ZHANG (张小康), Songlin LIU (刘松林), Xia LI (李夏), Qingjun ZHU (祝庆军), Jia LI (李佳). Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR[J]. Plasma Science and Technology, 2017, 19(11): 115602. DOI: 10.1088/2058-6272/aa808b
    [2]Wenjun YANG (杨文军), Guoqiang LI (李国强), Yanqiang HU (胡砚强), Songlin LIU (刘松林), Hang LI (李航), Xiang GAO (高翔). Effects of kinetic profiles on neutron wall loading distribution in CFETR[J]. Plasma Science and Technology, 2017, 19(8): 85102-085102. DOI: 10.1088/2058-6272/aa6795
    [3]ZHANG Xiaokang (张小康), LIU Songlin (刘松林), ZHU Qingjun (祝庆军), GAO Fangfang (高芳芳), LI Jia (李佳). Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR[J]. Plasma Science and Technology, 2016, 18(11): 1130-1138. DOI: 10.1088/1009-0630/18/11/12
    [4]YU Guanying (余冠英), LIU Xufeng (刘旭峰), LIU Songlin (刘松林). An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR[J]. Plasma Science and Technology, 2016, 18(10): 1038-1043. DOI: 10.1088/1009-0630/18/10/12
    [5]LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14
    [6]CHENG Anyi (成安义), ZHANG Qiyong (张启勇), FU Bao (付豹), LU Xiaofei (陆小飞). Process Design of Cryogenic Distribution System for CFETR CS Model Coil[J]. Plasma Science and Technology, 2016, 18(2): 202-205. DOI: 10.1088/1009-0630/18/2/18
    [7]YAO Yao (姚尧), SONG Yuntao (宋云涛), HUANG Xiongyi (黄雄一), SHEN Guang (沈光), WU Huan (吴欢), WANG Lin (王琳), HU Bing (胡兵), LUO Zhiren (罗志仁). R&D Activities of Joint Manufacture for ITER Poloidal Field Coil[J]. Plasma Science and Technology, 2015, 17(7): 612-616. DOI: 10.1088/1009-0630/17/7/15
    [8]GUO Bin(郭斌), SONG Zhiquan(宋执权), XU Liuwei(许留伟), ZHANG Ming(张明), LI Jinchao(李金超), JIANG Li(蒋力), FU Peng(傅鹏), WANG Min(王敏), DONG Lin(董琳). Design of a DC Busbar for the ITER PF Converter[J]. Plasma Science and Technology, 2014, 16(4): 406-409. DOI: 10.1088/1009-0630/16/4/19
    [9]MA Xuebin(马学斌), LIU Songlin(刘松林), LI Jia(李佳), PU Yong(蒲勇), CHEN Xiangcun(陈香存). Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept[J]. Plasma Science and Technology, 2014, 16(4): 390-395. DOI: 10.1088/1009-0630/16/4/16
    [10]K. YAMAUCHI, K. SHIMADA, T. TERAKADO, M. MATSUKAWA, R. COLETTI, A. LAMPASI, E. GAIO, A. COLETT, L. NOVELLO. Detailed Analysis of the Transient Voltage in a JT-60SA PF Coil Circuit[J]. Plasma Science and Technology, 2013, 15(2): 148-151. DOI: 10.1088/1009-0630/15/2/14

Catalog

    Article views (277) PDF downloads (550) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return