Advanced Search+
Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
Citation: Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf

Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

Funds: This research was supported by the Natural Science Foundation of Jiangsu Province (BK20160597) and the State Key Lab of Soil and Sustainable Agriculture (Y20160029).
More Information
  • Received Date: October 09, 2017
  • The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.
  • [1]
    Loneragan J F 1968 Nature 220 1307
    [2]
    Peng S, Tang Q and Zou Y 2009 Plant Prod. Sci. 12 3
    [3]
    Bennett E M, Carpenter S R and Caraco N F 2001 Bioscience 51 227
    [4]
    Panda R K and Behera S 2003 J. Food Agric. Environ. 1 499
    [5]
    Aznartemellado C et al 2016 J. Elementol. 21 141
    [6]
    Armstrong R D et al 2015 Plant Soil. 396 297
    [7]
    Lynikiene S, Pozeliene A and Rutkauskas G 2006 Int. Agrophys. 20 195
    [8]
    Zivkovic S et al 2004 Seed Sci. Technol. 32 693
    [9]
    Jiang J F et al 2014 Plasma Sci. Technol. 16 54
    [10]
    Huang M J 2010 J. Shanxi Agri. Sci. 38 22 (in Chinese)
    [11]
    Jiang J F et al 2014 PLoS One 9 e97753
    [12]
    Li L et al 2015 Sci. Rep. 5 13033
    [13]
    Comas L H, Eissenstat D M and Lakso A N 2000 New Phytol. 147 171
    [14]
    Stolarik T et al 2015 Plasma Chem. Plasma Process. 35 659
    [15]
    ?erá B et al 2010 IEEE Trans. Plasma Sci. 38 2963
    [16]
    Safari N et al 2017 Plasma Sci. Technol. 19 43
    [17]
    Zhao R J et al 2010 Spectrosc. Spectr. Anal. 30 3103 (in Chinese)
    [18]
    Li L et al 2014 Sci. Rep. 4 5859
    [19]
    Polley H W, Johnson H B and Mayeux H S 1992 Plant Soil. 142 97
    [20]
    Bj?rk R G and Molau U 2007 New Phytol. 176 862
    [21]
    Jackson L E and Stivers L J 1993 Biol. Agric. Hortic. 9 273
    [22]
    Fran?a M G C et al 1999 Pesqui. Agropecu. Bras. 34 1845
    [23]
    Ran Y, Habib R and Bar B 1994 Agron. J. 86 530
  • Related Articles

    [1]Ziming ZHANG, Chuan FANG, Yaoting WANG, Lanyue LUO, Heping LI. Analyses of nonequilibrium transport in atmospheric-pressure direct-current argon discharge under different modes[J]. Plasma Science and Technology, 2024, 26(11): 115402. DOI: 10.1088/2058-6272/ad6705
    [2]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [3]Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b
    [4]ZHANG Renxi (张仁熙), WANG Jingting (王婧婷), CAO Xu (曹栩), HOU Huiqi (侯惠奇). Decomposition of Potent Greenhouse Gases SF6, CF4 and SF5CF3 by Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2016, 18(4): 388-393. DOI: 10.1088/1009-0630/18/4/10
    [5]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [6]ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
    [7]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [8]HE Feng (何锋), HE Shoujie (何寿杰), ZHAO Xiaofei (赵晓菲), GUO Bingang (郭滨刚), OUYANG Jiting (欧阳吉庭). Study of the Discharge Mode in Micro-Hollow Cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083. DOI: 10.1088/1009-0630/14/12/08
    [9]CHANG Jiasen, WANG Hu, ZHANG Qiaogen, QIU Aici. Multichannel Discharge Characteristics of Gas Switch Gap in SF6-N2 or SF6-Ar Gas Mixtures under Nanosecond Triggering Pulses[J]. Plasma Science and Technology, 2011, 13(6): 719-723.
    [10]SHAO Xianjun, ZHANG Guanjun, KAWADA Masatake, MA Yue, LI Yaxi. Simulational study on multi-pulse phenomena of atmospheric pressure argon dielectric barrier discharge[J]. Plasma Science and Technology, 2011, 13(6): 708-713.
  • Cited by

    Periodical cited type(2)

    1. Zhang, L., Ruan, P., Chen, F. et al. Investigation of the Beam Quality of a Compact Non-Chain Pulsed DF Laser with a Confocal Positive Branch Unstable Resonator. Applied Sciences (Switzerland), 2023, 13(5): 3229. DOI:10.3390/app13053229
    2. Tang, J., Tang, B., Li, Y. et al. Research and Consideration on the Decomposition and Recovery Performance of Eco-friendly Gas Insulating Medium C5F10O | [环保绝缘气体C5F10O分解及复原性能研究现状及展望]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42(3): 1210-1222. DOI:10.13334/j.0258-8013.pcsee.211884

    Other cited types(0)

Catalog

    Article views (252) PDF downloads (583) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return