Advanced Search+
Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
Citation: Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd

Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool

Funds: This work was financially supported by the China National Textile & Apparel Council (2013‘Textile Vision’ Applied Basic Research, 2013-153) and the Collaborative Innovation Plan of Hubei Province for Key Technology of Eco-Ramie Industry (2014–8).
More Information
  • Received Date: December 06, 2017
  • Physical and chemical properties of wool surface significantly affect the absorbency, rate of dye bath exhaustion and flxation of the industrial dyes. Hence, surface modification is a necessary operation prior to coloration process in wool wet processing industries. Plasma treatment is an effective alternative for physiochemical modification of wool surface. However, optimum processing parameters to get the expected modification are still under investigation, hence this technology is still under development in the wool wet processing industries. Therefore, in this paper, treatment parameters with the help of simple dielectric barrier discharge plasma reactor and air as a plasma gas, which could be a promising combination for treatment of wool substrate at industrial scale were schematically studied, and their influence on the water absorbency, mechanical, and dyeing properties of twill woven wool fabric samples are reported. It is expected that the results will assist to the wool coloration industries to improve the dyeing processes.
  • [1]
    Shahidi S, Ghoranneviss M and Shari? S D 2014 J. Fusion Energy 33 177
    [2]
    Oliveira F R et al 2013 J. Appl. Polym. Sci. 128 2638
    [3]
    Molakarimi M, Khajeh Mehrizi M and Haji A 2016 J. Textile Inst. 107 1314
    [4]
    Haji A, Qavamnia S S and Bizhaem F K 2016 Ind. Textila 67 244
    [5]
    Ceria A et al 2010 J. Mater. Process. Technol. 210 720
    [6]
    KanCW,YuenCWMandHungO N2013 Surf. Coat. Technol. 228 S588
    [7]
    Haji A and Qavamnia S S 2015 Fibers Polym. 16 46
    [8]
    Kan C-W et al 2014 Carbohydr. Polym. 102 167
    [9]
    Oliveira F R, Zille A and Souto A P 2014 Appl. Surf. Sci. 293 177
    [10]
    Kan C 2006 Fibers Polym. 7 262
    [11]
    Wang X et al 2015 Appl. Surf. Sci. 342 101
    [12]
    Canbolat S, Kilinc M and Kut D 2015 Proc. Soc. Behav. Sci. 195 2143
    [13]
    Chen C et al 2016 Fibers Polym. 17 1181
    [14]
    Kan C W, Chan K and Yuen C W M 2004 Autex Res. J. 4 37
    [15]
    Cui N-Y and Brown N M D 2002 Appl. Surf. Sci. 189 31
    [16]
    Zhong Y and Netravali A N 2016 Surf. Innov. 4 3
    [17]
    Bu?ler S et al 2015 J. Food Eng. 167 166
    [18]
    El-Zawahry M M, Ibrahim N A and Eid M A 2006 Polym-Plast. Technol. 45 1123
    [19]
    Eren E et al 2015 J. Electrost. 77 69
    [20]
    Ayati Najafabadi S A A et al 2012 Surf. Eng. 28 710
    [21]
    Helmke A et al 2009 New J. Phys. 11 115025
    [22]
    Bhatt S, Pulpytel J and Are?-Khonsari F 2015 Surf. Innov. 3 63
    [23]
    Oliveira M S et al 2010 Surf. Eng. 26 519
    [24]
    Liu C et al 2004 Surf. Coat. Technol. 185 311
    [25]
    Kan C W and Yuen C W M 2006 J. Mater. Process. Technol. 178 52
    [26]
    Kusano Y et al 2017 Surf. Eng. 1
    [27]
    Zanini S et al 2017 Appl. Surf. Sci. 427 90
    [28]
    Zhang R and Wang A 2015 J. Clean. Prod. 87 961
    [29]
    Haji A, Mehrizi M K and Sharifzadeh J 2016 Fibers Polym. 17 1480
    [30]
    Gupta M C and Pandey R R 1988 J. Polym. Sci., Part A: Polym. Chem. 26 491
    [31]
    Kikani P et al 2013 Surf. Eng. 29 211
    [32]
    Wang C X et al 2015 Appl. Surf. Sci. 349 333
    [33]
    Wang C X and Qiu Y P 2007 Surf. Coat. Technol. 201 6273
    [34]
    Liu C et al 2000 Surf. Eng. 16 215
    [35]
    Sajed T et al 2018 Int. J. Biol. Macromol. 107 642
    [36]
    Atav R and Yurdakul A 2011 Fibres Text. East. Eur. 85 84
    [37]
    Barani H and Haji A 2015 J. Mol. Struct. 1079 35
    [38]
    Naebe M et al 2010 Text. Res. J. 80 312
    [39]
    Naebe M et al 2013 J. Text. Inst. 104 600
    [40]
    Cheng S et al 2010 Vacuum 84 1466
  • Related Articles

    [1]Hua LI (李花), Zhengduo WANG (王正铎), Lizhen YANG (杨丽珍), Qiang CHEN (陈强). Insight into the remaining high surface energy of atmospheric DBD plasma-treated polyethylene web after three months’ aging[J]. Plasma Science and Technology, 2019, 21(1): 15504-015504. DOI: 10.1088/2058-6272/aae2ad
    [2]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [3]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [4]Jorn HEINE, Roland DAMM, Christoph GERHARD, Stephan WIENEKE, Wolfgang VIOL. Surface Activation of Plane and Curved Automotive Polymer Surfaces by Using a Fittable Multi-Pin DBD Plasma Source[J]. Plasma Science and Technology, 2014, 16(6): 593-597. DOI: 10.1088/1009-0630/16/6/10
    [5]DENG Yongfeng(邓永锋), TAN Yonghua(谭永华), HAN Xianwei(韩先伟). Numerical and Experimental Investigation of Electron Beam Air Plasma Properties at Moderate Pressure[J]. Plasma Science and Technology, 2014, 16(1): 6-11. DOI: 10.1088/1009-0630/16/1/02
    [6]YIN Shiheng (尹诗衡), REN Li (任力), WANG Yingjun (王迎军). Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement[J]. Plasma Science and Technology, 2013, 15(10): 1041-1046. DOI: 10.1088/1009-0630/15/10/15
    [7]V. PRYSIAZHNYI. Plasma Treatment of Aluminum Using a Surface Barrier Discharge Operated in Air and Nitrogen: Parameter Optimization and Related Effects[J]. Plasma Science and Technology, 2013, 15(8): 794-799. DOI: 10.1088/1009-0630/15/8/15
    [8]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [9]S. M. BORGHEI, S. SHAHIDI, M. GHORANNEVISS, Z. ABDOLAHI. Investigations into the Anti-Felting Properties of Sputtered Wool Using Plasma Treatment[J]. Plasma Science and Technology, 2013, 15(1): 37-42. DOI: 10.1088/1009-0630/15/1/07
    [10]HU Miao(胡淼), GUO Yun(郭赟). The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(8): 735-740. DOI: 10.1088/1009-0630/14/8/10

Catalog

    Article views (235) PDF downloads (444) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return