Advanced Search+
Lijuan DUAN (段丽娟), Nan JIANG (姜楠), Na LU (鲁娜), Kefeng SHANG (商克峰), Jie LI (李杰), Yan WU (吴彦). A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 54009-054009. DOI: 10.1088/2058-6272/aaab42
Citation: Lijuan DUAN (段丽娟), Nan JIANG (姜楠), Na LU (鲁娜), Kefeng SHANG (商克峰), Jie LI (李杰), Yan WU (吴彦). A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 54009-054009. DOI: 10.1088/2058-6272/aaab42

A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

Funds: The authors thank the projects funded by the Fundamental Research Funds for the Central Universities under Grant (DUT 15QY17) and National Natural Science Foundation of China (Project Nos. 51477025 and U1462105) for their financial support to this research.
More Information
  • Received Date: November 22, 2017
  • In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3,H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l-1 and 10 μS cm-1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (De) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.
  • [1]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [2]
    Locke B R et al 2006 Ind. Eng. Chem. Res. 45 882
    [3]
    ShiJW,BianWJandYinXD 2009 J. Hazard. Mater. 171 924
    [4]
    Sato M, Ohgiyama T and Clements J S 1996 IEEE Trans. Ind. Appl. 32 106
    [5]
    Willberg D M et al 1996 Environ. Sci. Technol. 30 2526
    [6]
    Zhang Y et al 2013 Chem. Eng. J. 215–216 261
    [7]
    Lukes P et al 2008 Plasma Sources Sci. Technol. 17 024012
    [8]
    Sun B, Sato M and Clements J S 2000 Environ. Sci. Technol. 34 509
    [9]
    Schneider J et al 2014 Chem. Rev. 114 9919
    [10]
    Pelaez M et al 2012 Appl. Catal. B Environ. 125 331
    [11]
    Ghezzar M R et al 2007 Appl. Catal. B Environ. 72 304
    [12]
    Li J et al 2007 Desalination 212 123
    [13]
    Wang T C et al 2011 Environ. Sci. Technol. 45 9301
    [14]
    Hao X L et al 2007 J. Hazard. Mater. 141 475
    [15]
    Zhang Y et al 2013 J. Colloid Interface Sci. 409 104
    [16]
    Sugiarto A T and Sato M 2001 Thin Solid Films 386 295
    [17]
    ShenYJ,Lei LCandZhangXW2008 Chin. Sci. Bull. 53 1824
    [18]
    Jiang N et al 2016 Appl. Catal. B Environ. 184 355
    [19]
    Wang T C et al 2016 Water Res. 89 28
    [20]
    Mededovic S and Locke B R 2007 Ind. Eng. Chem. Res. 46 2702
    [21]
    Wang H J et al 2008 Appl. Catal. B Environ. 83 72
    [22]
    Magureanu M et al 2008 Plasma Chem. Plasma. Process. 28 677
    [23]
    Sugiarto A T et al 2003 J. Electrostat. 58 135
    [24]
    Su R et al 2012 ACS Nano 6 6284
    [25]
    Chen J, Eberlein L and Langford C H 2002 J. Photochem. Photobiol. A Chem. 148 183
  • Related Articles

    [1]Shaobo GONG, Zhongbing SHI, Yixuan ZHOU, Tongchuan ZHANG, Jinming GAO, Dianlin ZHENG, Ping SUN, Liming YU, Wei CHEN, Wulyu ZHONG, Min XU, Xuru DUAN. Optical design of vertical edge Thomson scattering on HL-2M tokamak[J]. Plasma Science and Technology, 2023, 25(7): 075601. DOI: 10.1088/2058-6272/acbd8d
    [2]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [3]Yong LU (卢勇), Lijun CAI (蔡立君), Yuxiang LIU (刘雨祥), Jian LIU (刘健), Yinglong YUAN (袁应龙), Guoyao ZHENG (郑国尧), Dequan LIU (刘德权). Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model[J]. Plasma Science and Technology, 2017, 19(9): 95601-095601. DOI: 10.1088/2058-6272/aa7628
    [4]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [5]CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15
    [6]CUI Xuewu (崔学武), PAN Yudong (潘宇东), CUI Zhengying (崔正英), LI Jiaxian (李佳鲜), et al.. HL-2M Divertor Geometry Exploration with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(12): 1184-1189. DOI: 10.1088/1009-0630/15/12/04
    [7]CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20
    [8]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [9]CAI Lijun (蔡立君), LIU Dequan (刘德权), RAN Hong (冉红), LI Jiaxian (李佳鲜), LI Yong (李勇), CAO Zeng (曹曾). Preliminary Calculation of Electromagnetic Loads on Vacuum Vessel of HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 271-276. DOI: 10.1088/1009-0630/15/3/16
    [10]LI Jiaxian (李佳鲜), PAN Yudong (潘宇东), ZHANG Jinhua (张锦华), CUI Xuewu (崔学武), CHEN Liaoyuan (陈燎原). Preliminary Analysis of Volt-Second Consumption on HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 235-239. DOI: 10.1088/1009-0630/15/3/09
  • Cited by

    Periodical cited type(6)

    1. Liu, Y., Li, W., Zhang, Y. et al. Development of a real-time tangential dispersion interferometer system and its first results for density feedback on EAST. Fusion Engineering and Design, 2025. DOI:10.1016/j.fusengdes.2025.114930
    2. Zhang, J., Yao, Y., Liu, Y. et al. Real-time data processing method for CO2 dispersion interferometer on EAST. Plasma Science and Technology, 2024, 26(8): 085603. DOI:10.1088/2058-6272/ad4597
    3. Zhang, W., Wu, T.Y., Li, Y.G. et al. High-precision digital time-amplitude analysis system for the neutron Time-Of-Flight spectrometer in HL-2M. Journal of Instrumentation, 2023, 18(9): P09014. DOI:10.1088/1748-0221/18/09/P09014
    4. Wen, X., Zhu, R., He, Z. et al. Development of a novel simulated neutron pulse signal generator for flux measurement. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022. DOI:10.1016/j.nima.2022.166998
    5. Zhang, W., Wu, T.Y., Li, Y.G. et al. Compact phase comparison system for the synthetic HCOOH laser diagnostic system in HL-2A. Journal of Instrumentation, 2022, 17(9): P09037. DOI:10.1088/1748-0221/17/09/P09037
    6. Zhang, W., Wu, T.Y., Li, Y.G. et al. An FFT overlap method for high bandwidth far-infrared laser Interferometer in HL-2A. Journal of Instrumentation, 2021, 16(9): P09010. DOI:10.1088/1748-0221/16/09/P09010

    Other cited types(0)

Catalog

    Article views (211) PDF downloads (444) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return