Advanced Search+
Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
Citation: Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19

Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB109001 and 2013GB104003), National Natural Science Foundation of China (Grant Nos. 11375195, 11505053, and 11575184).
More Information
  • Received Date: November 21, 2017
  • A synchronous demodulation system is proposed and deployed for CO2 dispersion interferometer on HL-2A, which aims at high plasma density measurements and real-time feedback control. In order to make sure that the demodulator and the interferometer signal are synchronous in phase, a phase adjustment (PA) method has been developed for the demodulation system. The method takes advantages of the field programmable gate array parallel and pipeline process capabilities to carry out high performance and low latency PA. Some experimental results presented show that the PA method is crucial to the synchronous demodulation system and reliable to follow the fast change of the electron density. The system can measure the line-integrated density with a high precision of 2.0×1018 m−2.
  • [1]
    Donné A J H 1995 Rev. Sci. Instrum. 66 3407
    [2]
    Li Y G et al 2015 Plasma Sci. Technol. 17 430
    [3]
    Zhou Y et al 2007 Rev. Sci. Instrum. 78 113503
    [4]
    Zhou Y et al 2012 Rev. Sci. Instrum. 83 10E336
    [5]
    Zhang W et al 2017 Plasma Sci. Technol. 19 075603
    [6]
    Zhou Y et al 2009 Plasma Sci. Technol. 11 413
    [7]
    Akiyama T et al 2015 J. Instrum. 10 P09022
    [8]
    Akiyama T et al 2015 Nucl. Fusion 55 093032
    [9]
    Akiyama T et al 2010 Plasma Fusion Res. 5 S1041
    [10]
    Ding B G et al 2015 Plasma Sci. Technol. 17 797
    [11]
    Dreier H et al 2011 Rev. Sci. Instrum. 82 063509
    [12]
    Khil’chenko A D et al 2009 Instrum. Exp. Tech. 52 382
    [13]
    Akiyama T et al 2014 Rev. Sci. Instrum. 85 11D301
    [14]
    Bagryansky P A et al 2006 Rev. Sci. Instrum. 77 053501
    [15]
    Stout D F and Kaufman M 1976 Handbook of Operarional Ampli?er Circuit Design (New York: McGraw-Hill)
    [16]
    Saukoski M, Aaltonen L and Halonen K A I 2008 IEEE Sens. J. 8 1722
    [17]
    Xu X F et al 2013 Plasma Sci. Technol. 15 417
    [18]
    Ding B G et al 2015 Plasma Sci. Technol. 17 837
    [19]
    Wang H X et al 2017 Rev. Sci. Instrum. 88 103502
  • Related Articles

    [1]Jiamin ZHANG, Yuan YAO, Yuyang LIU, Yuqi CHU, Tianyi RUAN, Yao ZHANG, Haiqing LIU, Yinxian JIE, Bili LING. Real-time data processing method for CO2 dispersion interferometer on EAST[J]. Plasma Science and Technology, 2024, 26(8): 085603. DOI: 10.1088/2058-6272/ad4597
    [2]Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226
    [3]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [4]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [5]JIANG Chunyu (蒋春雨), CAO Jing (曹靖), JIANG Xiaofei (蒋小菲), ZHAO Yanfeng (赵艳凤), SONG Xianying (宋先瑛), YIN Zejie (阴泽杰). Real-Time Bonner Sphere Spectrometry on the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 699-702. DOI: 10.1088/1009-0630/18/6/19
    [6]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [7]DING Baogang (丁宝钢), WU Jun (吴军), FAN Weiwei (范伟伟), WU Tongyu (吴彤宇), ZHOU Yan (周艳), YIN Zejie (阴泽杰). Real-Time Dynamic Spectrum Analysis for Plasma Electron Density and Faraday Rotation Angle Measurement on HL-2A[J]. Plasma Science and Technology, 2015, 17(12): 1092-1096. DOI: 10.1088/1009-0630/17/12/20
    [8]DING Baogang (丁宝钢), CHEN Chao (陈超), WANG Wendi (王闻迪), WU Tongyu (吴彤宇), ZHOU Yan (周艳), YIN Zejie (阴泽杰). Research on the Real-Time Phase Jump Process Method for Plasma Electron Density Measurement in HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(10): 837-841. DOI: 10.1088/1009-0630/17/10/05
    [9]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [10]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09

Catalog

    Article views (244) PDF downloads (540) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return