Advanced Search+
M RACK, D HÖSCHEN, D REITER, B UNTERBERG, J W COENEN, S BREZINSEK, O NEUBAUER, S BOZHENKOV, G CZYMEK, Y LIANG, M HUBENY, Ch LINSMEIER, the Wendelstein -X Team. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology[J]. Plasma Science and Technology, 2018, 20(5): 54002-054002. DOI: 10.1088/2058-6272/aaac78
Citation: M RACK, D HÖSCHEN, D REITER, B UNTERBERG, J W COENEN, S BREZINSEK, O NEUBAUER, S BOZHENKOV, G CZYMEK, Y LIANG, M HUBENY, Ch LINSMEIER, the Wendelstein -X Team. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology[J]. Plasma Science and Technology, 2018, 20(5): 54002-054002. DOI: 10.1088/2058-6272/aaac78

Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement no. 633053.
More Information
  • Received Date: November 17, 2017
  • Probe manipulators are a versatile addition to typical plasma edge diagnostics. Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes, such as material erosion, deposition or impurity transport pathways. When combined with electrical probes, a study of scrape-off layer and plasma edge density, temperature and flow profiles as well as magnetic topologies is possible. A mid-plane manipulator is already in operation on Wendelstein 7-X. A system in the divertor region is currently under development. In the present paper we discuss the critical issue of heat and power loads, power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X. All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein 7-X. A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations. Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.
  • [1]
    Schweer B et al 2005 Fusion Sci. Technol. 47 138
    [2]
    Herrmann A et al 2015 Fusion Eng. Des. 98-99 1496
    [3]
    Bosch H S et al 2010 IEEE Trans. Plasma Sci. 38 265
    [4]
    Neubauer O et al 2015 Fusion Eng. Des. 96-97 891
    [5]
    Nicolai D et al 2017 Fusion Eng. Des. 123 960
    [6]
    Satheeswaran G et al 2017 Fusion Eng. Des. 123 699
    [7]
    Drews P et al 2017 Nucl. Fusion 57 126020
    [8]
    Feng Y, Sardei F and Kisslinger J 1999 J. Nucl. Mater. 266-269 812
    [9]
    EIRENE [online] http://eirene.de [Accessed 30 Jan. 2018]
    [10]
    Reiter D, Baelmans M and B?rner P 2005 Fusion Sci. Technol. 47 172
    [11]
    Eich T, Reiser D and Finken K 2000 Nucl. Fusion 40 1757
    [12]
    Bozhenkov S et al 2013 Fusion Eng. Des. 88 2997
    [13]
    Ki?linger J et al 1994 Island divertor for the stellarator Wendelstein 7-X Proc. of the XXI EPS Conf. on Controlled Fusion and Plasma Physics (Geneva: European Physical Society) p368
    [14]
    Strumberger E 1998 Contrib. Plasma Phys. 38 106
    [15]
    Lore J D et al 2014 IEEE Trans. Plasma Sci. 42 539
    [16]
    Andreeva T 2002 Vacuum magnetic con?gurations of Wendelstein 7-X IPP-Report IPP III/270 (Garching: Max-Planck-Institut für Plasmaphysik)
  • Related Articles

    [1]Shaobo GONG, Zhongbing SHI, Yixuan ZHOU, Tongchuan ZHANG, Jinming GAO, Dianlin ZHENG, Ping SUN, Liming YU, Wei CHEN, Wulyu ZHONG, Min XU, Xuru DUAN. Optical design of vertical edge Thomson scattering on HL-2M tokamak[J]. Plasma Science and Technology, 2023, 25(7): 075601. DOI: 10.1088/2058-6272/acbd8d
    [2]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [3]Yong LU (卢勇), Lijun CAI (蔡立君), Yuxiang LIU (刘雨祥), Jian LIU (刘健), Yinglong YUAN (袁应龙), Guoyao ZHENG (郑国尧), Dequan LIU (刘德权). Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model[J]. Plasma Science and Technology, 2017, 19(9): 95601-095601. DOI: 10.1088/2058-6272/aa7628
    [4]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [5]CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15
    [6]CUI Xuewu (崔学武), PAN Yudong (潘宇东), CUI Zhengying (崔正英), LI Jiaxian (李佳鲜), et al.. HL-2M Divertor Geometry Exploration with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(12): 1184-1189. DOI: 10.1088/1009-0630/15/12/04
    [7]CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20
    [8]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [9]CAI Lijun (蔡立君), LIU Dequan (刘德权), RAN Hong (冉红), LI Jiaxian (李佳鲜), LI Yong (李勇), CAO Zeng (曹曾). Preliminary Calculation of Electromagnetic Loads on Vacuum Vessel of HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 271-276. DOI: 10.1088/1009-0630/15/3/16
    [10]LI Jiaxian (李佳鲜), PAN Yudong (潘宇东), ZHANG Jinhua (张锦华), CUI Xuewu (崔学武), CHEN Liaoyuan (陈燎原). Preliminary Analysis of Volt-Second Consumption on HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 235-239. DOI: 10.1088/1009-0630/15/3/09
  • Cited by

    Periodical cited type(6)

    1. Liu, Y., Li, W., Zhang, Y. et al. Development of a real-time tangential dispersion interferometer system and its first results for density feedback on EAST. Fusion Engineering and Design, 2025. DOI:10.1016/j.fusengdes.2025.114930
    2. Zhang, J., Yao, Y., Liu, Y. et al. Real-time data processing method for CO2 dispersion interferometer on EAST. Plasma Science and Technology, 2024, 26(8): 085603. DOI:10.1088/2058-6272/ad4597
    3. Zhang, W., Wu, T.Y., Li, Y.G. et al. High-precision digital time-amplitude analysis system for the neutron Time-Of-Flight spectrometer in HL-2M. Journal of Instrumentation, 2023, 18(9): P09014. DOI:10.1088/1748-0221/18/09/P09014
    4. Wen, X., Zhu, R., He, Z. et al. Development of a novel simulated neutron pulse signal generator for flux measurement. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022. DOI:10.1016/j.nima.2022.166998
    5. Zhang, W., Wu, T.Y., Li, Y.G. et al. Compact phase comparison system for the synthetic HCOOH laser diagnostic system in HL-2A. Journal of Instrumentation, 2022, 17(9): P09037. DOI:10.1088/1748-0221/17/09/P09037
    6. Zhang, W., Wu, T.Y., Li, Y.G. et al. An FFT overlap method for high bandwidth far-infrared laser Interferometer in HL-2A. Journal of Instrumentation, 2021, 16(9): P09010. DOI:10.1088/1748-0221/16/09/P09010

    Other cited types(0)

Catalog

    Article views (243) PDF downloads (404) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return