Advanced Search+
Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8
Citation: Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8

Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane

Funds: The authors gratefully acknowledge the financial support from the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University)(Grant No. Sklpme2015-4-24) and the Provincial Department of Education Science General Foundation of Liaoning (Contract No. L2015017).
More Information
  • Received Date: January 06, 2018
  • In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly (vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°)compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.
  • [1]
    Fabiano S et al 2014 ACS Appl. Mater. Interfaces 6 01438
    [2]
    Ke K et al 2014 Polymer 55 02611
    [3]
    Sinha T K et al 2016 ACS Appl. Mater. Interfaces 8 2414986
    [4]
    Ren X H et al 2017 Nano Energy 35 233
    [5]
    Sharma T et al 2012 Sens. Actuators A 177 87
    [6]
    Bae S H et al 2013 ACS Nano 7 3130
    [7]
    Sharma M et al 2014 Macromolecules 47 1392
    [8]
    Ren X H et al 2016 ACS Appl. Mater. Interfaces 8 26190
    [9]
    Broadhurst M G et al 1978 J. Appl. Phys. 49 104992
    [10]
    Lovinger A J et al 1982 Macromolecules 15 40
    [11]
    Lovinger A J et al 1983 Science 220 46021115
    [12]
    Mandal D et al 2011 J. Phys. Chem. B 115 10567
    [13]
    Martins P et al 2014 Prog. Polym. Sci. 39 04683
    [14]
    Tian H L et al 2017 Electrochim. Acta 247 787
    [15]
    Jana S et al 2015 Phys. Chem. Chem. Phys. 17 17429
    [16]
    Yang X J et al 2013 Adv. Mater. Res. 668 17
    [17]
    Jiang S L et al 2009 Curr. Appl. Phys. 9 05956
    [18]
    Xie L et al 2014 J. Mater. Chem. A 2 5244
    [19]
    Zhao Y W et al 2016 Int. J. Hydrogen Energy 41 16913
    [20]
    Rahman M A et al 2013 J. Alloys Compd. 581 724
    [21]
    Krishnamoorti R et al 2007 MRS Bulletin 32 341
    [22]
    Fan Y et al 2016 Appl. Surf. Sci. 364 798
    [23]
    Zhou T et al 2011 ACS Appl. Mater. Interfaces 3 2184
    [24]
    Xie L et al 2013 ACS Appl. Mater. Interfaces 5 1747
    [25]
    Zhao Y et al 2015 J. Adv. Phys. 4 4
    [26]
    Shen Y et al 2013 Appl. Phys. Lett. 103 1939
    [27]
    Xie L et al 2011 J. Mater. Chem. 21 5897
    [28]
    Yang K et al 2013 Chem. Mater. 25 2327
    [29]
    Gong L et al 2015 Composites Part B 73 49
    [30]
    Zhang C et al 2018 Plasma Sci. Technol. 20 014011
    [31]
    Mohaoatro et al 2017 High Volt. 2 60
    [32]
    Yan Z et al 2017 Plasma Sci. Technol. 19 035501
    [33]
    Cheng H et al 2016 High Volt. 1 62
    [34]
    Long T M et al 2006 Langmuir 22 4104
    [35]
    Zhang C et al 2010 IEEE Trans. Plasma Sci. 38 1517
    [36]
    Wang R et al 2016 Appl. Surf. Sci. 367 401
    [37]
    Zhang C et al 2014 Appl. Surf. Sci. 311 468
    [38]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [39]
    Shao T et al 2011 Appl. Phys. Lett. 98 021503
    [40]
    Shao T et al 2010 Appl. Surf. Sci. 256 3888
    [41]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [42]
    Wang R et al 2015 Appl. Surf. Sci. 328 509
    [43]
    Xie Q et al 2018 Plasma Sci. Technol. 20 025504
    [44]
    Wang R et al 2017 J. Appl. Phys. 122 233302
    [45]
    Mandal B P et al 2014 J. Phys. Chem. C 118 20819
    [46]
    Yu S et al 2009 Macromolecules 42 8870
    [47]
    Mendes F et al 2012 J. Mater. Sci. 47 1378
    [48]
    Li Y et al 2011 ACS Appl. Mater. Interfaces 3 4396
  • Related Articles

    [1]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [2]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [3]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [4]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [7]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [8]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.

Catalog

    Article views (215) PDF downloads (696) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return