Advanced Search+
Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8
Citation: Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8

Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane

Funds: The authors gratefully acknowledge the financial support from the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University)(Grant No. Sklpme2015-4-24) and the Provincial Department of Education Science General Foundation of Liaoning (Contract No. L2015017).
More Information
  • Received Date: January 06, 2018
  • In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly (vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°)compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.
  • [1]
    Fabiano S et al 2014 ACS Appl. Mater. Interfaces 6 01438
    [2]
    Ke K et al 2014 Polymer 55 02611
    [3]
    Sinha T K et al 2016 ACS Appl. Mater. Interfaces 8 2414986
    [4]
    Ren X H et al 2017 Nano Energy 35 233
    [5]
    Sharma T et al 2012 Sens. Actuators A 177 87
    [6]
    Bae S H et al 2013 ACS Nano 7 3130
    [7]
    Sharma M et al 2014 Macromolecules 47 1392
    [8]
    Ren X H et al 2016 ACS Appl. Mater. Interfaces 8 26190
    [9]
    Broadhurst M G et al 1978 J. Appl. Phys. 49 104992
    [10]
    Lovinger A J et al 1982 Macromolecules 15 40
    [11]
    Lovinger A J et al 1983 Science 220 46021115
    [12]
    Mandal D et al 2011 J. Phys. Chem. B 115 10567
    [13]
    Martins P et al 2014 Prog. Polym. Sci. 39 04683
    [14]
    Tian H L et al 2017 Electrochim. Acta 247 787
    [15]
    Jana S et al 2015 Phys. Chem. Chem. Phys. 17 17429
    [16]
    Yang X J et al 2013 Adv. Mater. Res. 668 17
    [17]
    Jiang S L et al 2009 Curr. Appl. Phys. 9 05956
    [18]
    Xie L et al 2014 J. Mater. Chem. A 2 5244
    [19]
    Zhao Y W et al 2016 Int. J. Hydrogen Energy 41 16913
    [20]
    Rahman M A et al 2013 J. Alloys Compd. 581 724
    [21]
    Krishnamoorti R et al 2007 MRS Bulletin 32 341
    [22]
    Fan Y et al 2016 Appl. Surf. Sci. 364 798
    [23]
    Zhou T et al 2011 ACS Appl. Mater. Interfaces 3 2184
    [24]
    Xie L et al 2013 ACS Appl. Mater. Interfaces 5 1747
    [25]
    Zhao Y et al 2015 J. Adv. Phys. 4 4
    [26]
    Shen Y et al 2013 Appl. Phys. Lett. 103 1939
    [27]
    Xie L et al 2011 J. Mater. Chem. 21 5897
    [28]
    Yang K et al 2013 Chem. Mater. 25 2327
    [29]
    Gong L et al 2015 Composites Part B 73 49
    [30]
    Zhang C et al 2018 Plasma Sci. Technol. 20 014011
    [31]
    Mohaoatro et al 2017 High Volt. 2 60
    [32]
    Yan Z et al 2017 Plasma Sci. Technol. 19 035501
    [33]
    Cheng H et al 2016 High Volt. 1 62
    [34]
    Long T M et al 2006 Langmuir 22 4104
    [35]
    Zhang C et al 2010 IEEE Trans. Plasma Sci. 38 1517
    [36]
    Wang R et al 2016 Appl. Surf. Sci. 367 401
    [37]
    Zhang C et al 2014 Appl. Surf. Sci. 311 468
    [38]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [39]
    Shao T et al 2011 Appl. Phys. Lett. 98 021503
    [40]
    Shao T et al 2010 Appl. Surf. Sci. 256 3888
    [41]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [42]
    Wang R et al 2015 Appl. Surf. Sci. 328 509
    [43]
    Xie Q et al 2018 Plasma Sci. Technol. 20 025504
    [44]
    Wang R et al 2017 J. Appl. Phys. 122 233302
    [45]
    Mandal B P et al 2014 J. Phys. Chem. C 118 20819
    [46]
    Yu S et al 2009 Macromolecules 42 8870
    [47]
    Mendes F et al 2012 J. Mater. Sci. 47 1378
    [48]
    Li Y et al 2011 ACS Appl. Mater. Interfaces 3 4396
  • Related Articles

    [1]Zhiyun HAN, Qingmin LI, Junke LI, Mengxi WANG, Hanwen REN, Liang ZOU. Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress[J]. Plasma Science and Technology, 2024, 26(2): 025505. DOI: 10.1088/2058-6272/ad0d49
    [2]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [3]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [4]Qiyun CHENG (程启耘), Yi YU (余羿), Shaobo GONG (龚少博), Min XU (许敏), Tao LAN (兰涛), Wei JIANG (蒋蔚), Boda YUAN (袁博达), Yifan WU (吴一帆), Lin NIE (聂林), Rui KE (柯锐), Ting LONG (龙婷), Dong GUO (郭栋), Minyou YE (叶民友), Xuru DUAN (段旭如). Optical path design of phase contrast imaging on HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125601. DOI: 10.1088/2058-6272/aa8d64
    [5]Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001
    [6]LI Jun(李俊), YANG Zhoujun(杨州军), GAO Li(高丽), LIU Minghai(刘明海), ZHUANG Ge(庄革). Design of Digital Multi-Radian Phase Detector on J-TEXT[J]. Plasma Science and Technology, 2014, 16(10): 974-977. DOI: 10.1088/1009-0630/16/10/13
    [7]WU Maoshui(吴茂水), XU Yu(徐雨), DAI Linjun(戴林君), WANG Tiantian(王恬恬), LI Xue(李雪), WANG Dexin(王德信), GUO Ying(郭颖), DING Ke(丁可), HUANG Xiaojiang(黄晓江), SHI Jianjun(石建军), ZHANG Jing(张菁). The Gas Nucleation Process Study of Anatase TiO 2 in Atmospheric Non-Thermal Plasma Enhanced Chemical Vapor Deposition[J]. Plasma Science and Technology, 2014, 16(1): 32-36. DOI: 10.1088/1009-0630/16/1/07
    [8]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [9]FENG Qichun(冯启春), WANG Qingshang(王清尚), LIU Jianli(刘剑利), REN Yanyu(任延宇), ZHANG Jingbo(张景波), HUO Lei(霍雷). The Evolution of Elliptic Flow under First Order Phase Transition[J]. Plasma Science and Technology, 2012, 14(7): 573-576. DOI: 10.1088/1009-0630/14/7/01
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Article views (215) PDF downloads (696) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return