Advanced Search+
Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
Citation: Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491

Dust acoustic shock waves in magnetized dusty plasma

More Information
  • Received Date: December 23, 2017
  • We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.
  • [1]
    Zang L P and Wang J K 2006 Phys. Plasmas 13 022303
    [2]
    Shahmansouri M and Mamun A A 2014 J. Plasma Phys. 80 593
    [3]
    El-Hanbaly A M et al 2015 J. Theor. Appl. Phys. 9 167
    [4]
    Chahal B S et al 2017 J. Theor. Appl. Phys. 11 181
    [5]
    Shahmansouri M 2014 Phys. Scr. 89 075604
    [6]
    Ferdousi et al 2015 Astrophys. Space Sci. 360 43
    [7]
    Tasnim I et al 2015 IEEE Trans. Plasma Sci. 43 2187
    [8]
    Ghai Y and Saini N S 2017 Astrophys. Space Sci. 362 58
    [9]
    Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: IOP Publishing)
    [10]
    Rao N N et al 1990 Planet. Space Sci. 38 543
    [11]
    Barkan A et al 1995 Phys. Plasmas 2 3563
    [12]
    Shukla P K 1992 Phys. Scr. 45 508
    [13]
    Melands? F and Shukla P K 1995 Planet. Space Sci. 43 635
    [14]
    Homann A et al 1997 Phys. Rev. E 56 7138
    [15]
    Goertz C K 1989 Rev. Geophys. 27 271
    [16]
    Mendis D A and Rosenberg M 1994 Annu. Rev. Astron.Astrophys. 32 419
    [17]
    Shahmansouri M and Tribeche M 2012 Astrophys. Space Sci.342 87
    [18]
    Shahmansouri M and Alinejad H 2013 Phys. Plasmas 20 033704
    [19]
    Sahu B and Tribeche M 2012 Astrophys. Space Sci. 338 259
    [20]
    Hellberg M A et al 2009 Phys. Plasmas 16 094701
    [21]
    Armstrong T P 1983 J. Geophys. Res. 88 8893
    [22]
    Leubner M P 1982 J. Geophys. Res. 87 6335
    [23]
    Lui A T Y et al 1982 J. Geophys. Res. 87 8315
    [24]
    Scudder J D 1992a Astrophys. J. 398 299
    [25]
    Scudder J D 1992b Astrophys. J. 398 319
    [26]
    Seki K et al 2003 Nature 422 589
    [27]
    Nishino M N et al 2005 COSPAR Colloq. Ser. 16 28
    [28]
    Zhang L P and Xue J K 2005 Phys. Plasmas 12 042304
    [29]
    Zhang L P and Xue J K 2008 Phys. Plasmas 15 053706
    [30]
    Sahu B et al 2014 Phys. Plasmas 21 103701
    [31]
    Borhanian J and Shahmansouri M 2013 Phys. Plasmas 20 013707
    [32]
    Sabetkar A and Dorranian D 2015 J. Theor. Appl. Phys. 9 141
    [33]
    Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
    [34]
    Malfliet W and Hereman W 1996 Phys. Scr. 54 563
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [4]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [5]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [6]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [7]A. N. KLEIN, R. P. CARDOSO, H. C. PAVANATI, C. BINDER, A. M. MALISKA, G. HAMMES, D. FUS~AO, A. SEEBER, et al. DC Plasma Technology Applied to Powder Metallurgy: an Overview[J]. Plasma Science and Technology, 2013, 15(1): 70-81. DOI: 10.1088/1009-0630/15/1/12
    [8]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [9]YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14
    [10]HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580.
  • Cited by

    Periodical cited type(2)

    1. Wei, Y., Chen, S., Wang, Y. et al. Research progress on refractory metal and metallic carbide/oxide powder preparation techniques | [难 熔 金 属 及 金 属 碳 /氧 化 物 粉 体 制 备 技 术 研 究 进 展]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028719. DOI:10.7527/S1000-6893.2023.28719
    2. Zhu, H.-L., Li, X.-Y., Tong, H.-H. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma | [三维数值模拟射频热等离子体的物理场分布]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(15): 155202. DOI:10.7498/aps.70.20202135

    Other cited types(0)

Catalog

    Article views (220) PDF downloads (721) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return