Advanced Search+
Junggil KIM, Yunjung KIM, Sangjin KIM, Guangsup CHO. Silicone-coated polyimide films deposited by surface dielectric barrier discharges[J]. Plasma Science and Technology, 2019, 21(1): 15506-015506. DOI: 10.1088/2058-6272/aae477
Citation: Junggil KIM, Yunjung KIM, Sangjin KIM, Guangsup CHO. Silicone-coated polyimide films deposited by surface dielectric barrier discharges[J]. Plasma Science and Technology, 2019, 21(1): 15506-015506. DOI: 10.1088/2058-6272/aae477

Silicone-coated polyimide films deposited by surface dielectric barrier discharges

  • Hybrid dielectric barrier discharges are investigated for plasma generated on the surface of a dielectric layer, where two conducting electrodes of high voltage and ground are formulated on the upper and bottom surfaces. Using a flexible thin polyimide-film of a thickness ranging from 25 to 125 μm, a plasma is generated with a voltage of about 1 kV and a frequency of 40 kHz. However, the surface of the dielectric layer was etched through a chemical reaction involving plasma oxygen radical species, and thus the polyimide films failed readily, resulting in dielectric breakdown within short operating time ranging from a few minutes to several tens of minutes, based on the film thicknesses of 25 μm and 125 μm, respectively. These plasma erosions were prevented by coating the polyimide surface with a 25 μm thick silicone paste. The silicone- coated film surface was then reinforced remarkably against plasma erosion as the organic polymer was vulnerable to chemical reaction of the plasma species, while the inorganic silicone exhibited a high chemical resistance against plasma erosion.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return