Citation: | Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6 |
[1] |
Karaolia P et al 2018 Appl. Catal. B 224 810
|
[2] |
Ren X Y et al 2017 Chemosphere 173 563
|
[3] |
Liu Y Q et al 2016 Chem. Eng. J. 284 1317
|
[4] |
Zhou J X et al 2018 Colloids Surf. A 545 60
|
[5] |
Li N et al 2018 Electrochim. Acta 270 330
|
[6] |
Locke B R and Thagard S M 2012 Plasma Chem. Plasma Process. 32 875
|
[7] |
Jiang N et al 2018 Chem. Eng. J. 350 12
|
[8] |
Wang T C et al 2018 Environ. Sci. Technol. 52 7884
|
[9] |
Jiang B et al 2014 Chem. Eng. J. 236 348
|
[10] |
Xu D et al 2017 Plasma Sci. Technol. 19 064004
|
[11] |
Krupe? J et al 2018 J. Phys. D Appl. Phys. 51 174003
|
[12] |
Nayak G et al 2018 Plasma Process. Polym. 15 1700119
|
[13] |
Zhao D et al 2018 Plasma Sci. Technol. 20 014020
|
[14] |
Zhao H et al 2018 Plasma Sci. Technol. 20 035503
|
[15] |
Wang H J et al 2017 Plasma Sci. Technol. 19 015504
|
[16] |
Sun Q N et al 2018 Environ. Sci. Nano 5 2440
|
[17] |
Wang K et al 2018 Front. Chem. Sci. Eng. 12 376
|
[18] |
Chen C M et al 2014 Fuel Process. Technol. 124 165
|
[19] |
Chen C M et al 2014 J. Ind. Eng. Chem. 20 2782
|
[20] |
Wang K et al 2017 Int. J. Electrochem. Sci. 12 8306
|
[21] |
Menya E et al 2018 Chem. Eng. Res. Des. 129 271
|
[22] |
Wolski L and Ziolek M 2018 App. Catal. B 224 634
|
[23] |
Ayoub G and Ghauch A 2014 Chem. Eng. J. 256 280
|
[24] |
Tang S F et al 2016 Environ. Sci. Pollut. Res. 23 18800
|
[25] |
Vega E and Valdés H 2018 Micropor. Mesopor. Mater. 259 1
|
[26] |
Luo X N et al 2017 Nanoscale Res. Lett. 12 99
|
[27] |
Cao Y et al 2018 Plasma Sci. Technol. 20 054018
|
[28] |
He X X et al 2017 J. Hazard. Mater. 326 101
|
[29] |
Wang T C et al 2016 Water Res. 89 28
|
[30] |
Duan L J et al 2018 Plasma Sci. Technol. 20 054009
|
[31] |
Du X D et al 2017 Chem. Eng. J. 313 1023
|
[32] |
Wang T C et al 2017 Environ. Sci. Pollut. Res. 24 21591
|
[33] |
Gu J M et al 2018 Nanoscale 10 17722
|
[34] |
Hu X Y et al 2016 Appl. Surf. Sci. 362 329
|
[35] |
Chen Q H, Wu S N and Xin Y J 2016 Chem. Eng. J. 302 377
|
[1] | Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4 |
[2] | Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9 |
[3] | Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c |
[4] | MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17 |
[5] | SONG Ye (宋晔), WANG Qi (王奇), MENG Yuedong (孟月东). Plasma Syntheses of Carbon Nanotube-Supported Pt-Pd Nanoparticles[J]. Plasma Science and Technology, 2016, 18(4): 438-441. DOI: 10.1088/1009-0630/18/4/18 |
[6] | WANG Huijuan (王慧娟), GUO He (郭贺), LIU Yongjie (刘永杰), YI Chengwu (依成武). Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas[J]. Plasma Science and Technology, 2015, 17(10): 881-886. DOI: 10.1088/1009-0630/17/10/12 |
[7] | QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13 |
[8] | JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18 |
[9] | CHE Yao (车垚), ZHOU Jiayong (周家勇), WANG Zuwu (王祖武). Plasma Modification of Activated Carbon Fibers for Adsorption of SO 2[J]. Plasma Science and Technology, 2013, 15(10): 1047-1052. DOI: 10.1088/1009-0630/15/10/16 |
[10] | Katerina ZAHARIEVA, Gheorghi VISSOKOV, Janis GRABIS, Slavcho RAKOVSKY. Plasma-Chemical Synthesis of Nanosized Powders – Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes[J]. Plasma Science and Technology, 2012, 14(11): 980-995. DOI: 10.1088/1009-0630/14/11/06 |
1. |
Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
![]() |
|
2. | Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021 | |
3. | Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672 | |
4. |
Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
![]() |
|
5. | Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8 | |
6. | Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486 | |
7. | Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253 | |
8. | Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253 | |
9. | Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173 | |
10. | Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4 | |
11. | Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9 | |
12. | Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573 | |
13. | Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924 | |
14. | Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841 | |
15. | Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9 | |
16. | Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321 | |
17. | ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30 | |
18. | Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8 | |
19. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |