Advanced Search+
Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
Citation: Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6

Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon

Funds: This work was supported by National Natural Science Foundation of China (No. 51608468), High School Science and Technology Research Project of Hebei Province (No. QN2018258), China Postdoctoral Science Foundation (Nos. 2015M580216 and 2016M601285), and Hebei Province Preferred Postdoctoral Science Foundation (No. B2016003019).
More Information
  • Received Date: August 19, 2018
  • A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon (Fe-Mn GAC) under a dielectric barrier discharge (DBD) plasma was investigated to enhance the degradation of oxytetracycline (OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD + Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD + virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.
  • [1]
    Karaolia P et al 2018 Appl. Catal. B 224 810
    [2]
    Ren X Y et al 2017 Chemosphere 173 563
    [3]
    Liu Y Q et al 2016 Chem. Eng. J. 284 1317
    [4]
    Zhou J X et al 2018 Colloids Surf. A 545 60
    [5]
    Li N et al 2018 Electrochim. Acta 270 330
    [6]
    Locke B R and Thagard S M 2012 Plasma Chem. Plasma Process. 32 875
    [7]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [8]
    Wang T C et al 2018 Environ. Sci. Technol. 52 7884
    [9]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [10]
    Xu D et al 2017 Plasma Sci. Technol. 19 064004
    [11]
    Krupe? J et al 2018 J. Phys. D Appl. Phys. 51 174003
    [12]
    Nayak G et al 2018 Plasma Process. Polym. 15 1700119
    [13]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [14]
    Zhao H et al 2018 Plasma Sci. Technol. 20 035503
    [15]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [16]
    Sun Q N et al 2018 Environ. Sci. Nano 5 2440
    [17]
    Wang K et al 2018 Front. Chem. Sci. Eng. 12 376
    [18]
    Chen C M et al 2014 Fuel Process. Technol. 124 165
    [19]
    Chen C M et al 2014 J. Ind. Eng. Chem. 20 2782
    [20]
    Wang K et al 2017 Int. J. Electrochem. Sci. 12 8306
    [21]
    Menya E et al 2018 Chem. Eng. Res. Des. 129 271
    [22]
    Wolski L and Ziolek M 2018 App. Catal. B 224 634
    [23]
    Ayoub G and Ghauch A 2014 Chem. Eng. J. 256 280
    [24]
    Tang S F et al 2016 Environ. Sci. Pollut. Res. 23 18800
    [25]
    Vega E and Valdés H 2018 Micropor. Mesopor. Mater. 259 1
    [26]
    Luo X N et al 2017 Nanoscale Res. Lett. 12 99
    [27]
    Cao Y et al 2018 Plasma Sci. Technol. 20 054018
    [28]
    He X X et al 2017 J. Hazard. Mater. 326 101
    [29]
    Wang T C et al 2016 Water Res. 89 28
    [30]
    Duan L J et al 2018 Plasma Sci. Technol. 20 054009
    [31]
    Du X D et al 2017 Chem. Eng. J. 313 1023
    [32]
    Wang T C et al 2017 Environ. Sci. Pollut. Res. 24 21591
    [33]
    Gu J M et al 2018 Nanoscale 10 17722
    [34]
    Hu X Y et al 2016 Appl. Surf. Sci. 362 329
    [35]
    Chen Q H, Wu S N and Xin Y J 2016 Chem. Eng. J. 302 377
  • Related Articles

    [1]Shubin CHEN, Shiyu WANG, Anna ZHU, Ruixue WANG. Multiple chemical warfare agent simulant decontamination by self-driven microplasma[J]. Plasma Science and Technology, 2023, 25(11): 114002. DOI: 10.1088/2058-6272/acd32c
    [2]Kefeng SHANG (商克峰), Jie LI (李杰), Rino MORENT. Hybrid electric discharge plasma technologies for water decontamination: a short review[J]. Plasma Science and Technology, 2019, 21(4): 43001-043001. DOI: 10.1088/2058-6272/aafbc6
    [3]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [4]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [5]JIANG Song(姜松), WEN Yiyong(文贻勇), LIU Kefu(刘克富). Yield of H 2 O 2 in Gas-Liquid Phase with Pulsed DBD[J]. Plasma Science and Technology, 2014, 16(1): 59-62. DOI: 10.1088/1009-0630/16/1/13
    [6]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [7]CHE Yao (车垚), ZHOU Jiayong (周家勇), WANG Zuwu (王祖武). Plasma Modification of Activated Carbon Fibers for Adsorption of SO 2[J]. Plasma Science and Technology, 2013, 15(10): 1047-1052. DOI: 10.1088/1009-0630/15/10/16
    [8]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [9]QI Bin (亓斌), WANG Shouyu (王守宇), ZHAO Xingyan (赵兴言), ZHU Xiaoying (祝笑颖), SUN Dapeng (孙大鹏), LIU Chen (刘晨), XU Changjiang (徐长江). The Influence of Triaxiality Parameter Υ on the Chiral Doublet Bands with (?g9/2)-1 (?h11/2)2 Configuration[J]. Plasma Science and Technology, 2012, 14(7): 595-597. DOI: 10.1088/1009-0630/14/7/06
    [10]ZHONG Shao-Feng (钟少锋). Surface Modification of Polypropylene Microporous Membrane by Atmospheric- Pressure Plasma Immobilization of N,N-dimethylamino ethyl methacrylate[J]. Plasma Science and Technology, 2010, 12(5): 619-627.

Catalog

    Article views (147) PDF downloads (512) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return