Advanced Search+
Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
Citation: Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6

Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon

Funds: This work was supported by National Natural Science Foundation of China (No. 51608468), High School Science and Technology Research Project of Hebei Province (No. QN2018258), China Postdoctoral Science Foundation (Nos. 2015M580216 and 2016M601285), and Hebei Province Preferred Postdoctoral Science Foundation (No. B2016003019).
More Information
  • Received Date: August 19, 2018
  • A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon (Fe-Mn GAC) under a dielectric barrier discharge (DBD) plasma was investigated to enhance the degradation of oxytetracycline (OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD + Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD + virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.
  • [1]
    Karaolia P et al 2018 Appl. Catal. B 224 810
    [2]
    Ren X Y et al 2017 Chemosphere 173 563
    [3]
    Liu Y Q et al 2016 Chem. Eng. J. 284 1317
    [4]
    Zhou J X et al 2018 Colloids Surf. A 545 60
    [5]
    Li N et al 2018 Electrochim. Acta 270 330
    [6]
    Locke B R and Thagard S M 2012 Plasma Chem. Plasma Process. 32 875
    [7]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [8]
    Wang T C et al 2018 Environ. Sci. Technol. 52 7884
    [9]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [10]
    Xu D et al 2017 Plasma Sci. Technol. 19 064004
    [11]
    Krupe? J et al 2018 J. Phys. D Appl. Phys. 51 174003
    [12]
    Nayak G et al 2018 Plasma Process. Polym. 15 1700119
    [13]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [14]
    Zhao H et al 2018 Plasma Sci. Technol. 20 035503
    [15]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [16]
    Sun Q N et al 2018 Environ. Sci. Nano 5 2440
    [17]
    Wang K et al 2018 Front. Chem. Sci. Eng. 12 376
    [18]
    Chen C M et al 2014 Fuel Process. Technol. 124 165
    [19]
    Chen C M et al 2014 J. Ind. Eng. Chem. 20 2782
    [20]
    Wang K et al 2017 Int. J. Electrochem. Sci. 12 8306
    [21]
    Menya E et al 2018 Chem. Eng. Res. Des. 129 271
    [22]
    Wolski L and Ziolek M 2018 App. Catal. B 224 634
    [23]
    Ayoub G and Ghauch A 2014 Chem. Eng. J. 256 280
    [24]
    Tang S F et al 2016 Environ. Sci. Pollut. Res. 23 18800
    [25]
    Vega E and Valdés H 2018 Micropor. Mesopor. Mater. 259 1
    [26]
    Luo X N et al 2017 Nanoscale Res. Lett. 12 99
    [27]
    Cao Y et al 2018 Plasma Sci. Technol. 20 054018
    [28]
    He X X et al 2017 J. Hazard. Mater. 326 101
    [29]
    Wang T C et al 2016 Water Res. 89 28
    [30]
    Duan L J et al 2018 Plasma Sci. Technol. 20 054009
    [31]
    Du X D et al 2017 Chem. Eng. J. 313 1023
    [32]
    Wang T C et al 2017 Environ. Sci. Pollut. Res. 24 21591
    [33]
    Gu J M et al 2018 Nanoscale 10 17722
    [34]
    Hu X Y et al 2016 Appl. Surf. Sci. 362 329
    [35]
    Chen Q H, Wu S N and Xin Y J 2016 Chem. Eng. J. 302 377
  • Related Articles

    [1]Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4
    [2]Shoufeng TANG (唐首锋), Na LI (李娜), Jinbang QI (綦金榜), Deling YUAN (袁德玲), Jie LI (李杰). Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration[J]. Plasma Science and Technology, 2018, 20(5): 54013-054013. DOI: 10.1088/2058-6272/aaa7e9
    [3]Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c
    [4]MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17
    [5]SONG Ye (宋晔), WANG Qi (王奇), MENG Yuedong (孟月东). Plasma Syntheses of Carbon Nanotube-Supported Pt-Pd Nanoparticles[J]. Plasma Science and Technology, 2016, 18(4): 438-441. DOI: 10.1088/1009-0630/18/4/18
    [6]WANG Huijuan (王慧娟), GUO He (郭贺), LIU Yongjie (刘永杰), YI Chengwu (依成武). Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas[J]. Plasma Science and Technology, 2015, 17(10): 881-886. DOI: 10.1088/1009-0630/17/10/12
    [7]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [8]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [9]CHE Yao (车垚), ZHOU Jiayong (周家勇), WANG Zuwu (王祖武). Plasma Modification of Activated Carbon Fibers for Adsorption of SO 2[J]. Plasma Science and Technology, 2013, 15(10): 1047-1052. DOI: 10.1088/1009-0630/15/10/16
    [10]Katerina ZAHARIEVA, Gheorghi VISSOKOV, Janis GRABIS, Slavcho RAKOVSKY. Plasma-Chemical Synthesis of Nanosized Powders – Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes[J]. Plasma Science and Technology, 2012, 14(11): 980-995. DOI: 10.1088/1009-0630/14/11/06
  • Cited by

    Periodical cited type(19)

    1. Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
    2. Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021
    3. Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672
    4. Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
    5. Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8
    6. Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486
    7. Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253
    8. Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253
    9. Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173
    10. Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4
    11. Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9
    12. Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573
    13. Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924
    14. Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841
    15. Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9
    16. Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321
    17. ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30
    18. Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8
    19. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (512) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return