Advanced Search+
Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
Citation: Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6

Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon

Funds: This work was supported by National Natural Science Foundation of China (No. 51608468), High School Science and Technology Research Project of Hebei Province (No. QN2018258), China Postdoctoral Science Foundation (Nos. 2015M580216 and 2016M601285), and Hebei Province Preferred Postdoctoral Science Foundation (No. B2016003019).
More Information
  • Received Date: August 19, 2018
  • A catalytic approach using a synthesized iron and manganese oxide-supported granular activated carbon (Fe-Mn GAC) under a dielectric barrier discharge (DBD) plasma was investigated to enhance the degradation of oxytetracycline (OTC) in water. The prepared Fe-Mn GAC was characterized by x-ray diffraction and scanning electron microscopy, and the results showed that the bimetallic oxides had been successfully spread on the GAC surface. The experimental results showed that the DBD + Fe-Mn GAC exhibited better OTC removal efficiency than the sole DBD and DBD + virgin GAC systems. Increasing the fabricated catalyst and discharge voltage was favorable to the antibiotic elimination and energy yield in the hybrid process. The coupling process could be elucidated by the ozone decomposition after Fe-Mn GAC addition, and highly hydroxyl and superoxide radicals both play significant roles in the decontamination. The main intermediate products were identified by HPLC-MS to study the mechanism in the collaborative system.
  • [1]
    Karaolia P et al 2018 Appl. Catal. B 224 810
    [2]
    Ren X Y et al 2017 Chemosphere 173 563
    [3]
    Liu Y Q et al 2016 Chem. Eng. J. 284 1317
    [4]
    Zhou J X et al 2018 Colloids Surf. A 545 60
    [5]
    Li N et al 2018 Electrochim. Acta 270 330
    [6]
    Locke B R and Thagard S M 2012 Plasma Chem. Plasma Process. 32 875
    [7]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [8]
    Wang T C et al 2018 Environ. Sci. Technol. 52 7884
    [9]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [10]
    Xu D et al 2017 Plasma Sci. Technol. 19 064004
    [11]
    Krupe? J et al 2018 J. Phys. D Appl. Phys. 51 174003
    [12]
    Nayak G et al 2018 Plasma Process. Polym. 15 1700119
    [13]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [14]
    Zhao H et al 2018 Plasma Sci. Technol. 20 035503
    [15]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [16]
    Sun Q N et al 2018 Environ. Sci. Nano 5 2440
    [17]
    Wang K et al 2018 Front. Chem. Sci. Eng. 12 376
    [18]
    Chen C M et al 2014 Fuel Process. Technol. 124 165
    [19]
    Chen C M et al 2014 J. Ind. Eng. Chem. 20 2782
    [20]
    Wang K et al 2017 Int. J. Electrochem. Sci. 12 8306
    [21]
    Menya E et al 2018 Chem. Eng. Res. Des. 129 271
    [22]
    Wolski L and Ziolek M 2018 App. Catal. B 224 634
    [23]
    Ayoub G and Ghauch A 2014 Chem. Eng. J. 256 280
    [24]
    Tang S F et al 2016 Environ. Sci. Pollut. Res. 23 18800
    [25]
    Vega E and Valdés H 2018 Micropor. Mesopor. Mater. 259 1
    [26]
    Luo X N et al 2017 Nanoscale Res. Lett. 12 99
    [27]
    Cao Y et al 2018 Plasma Sci. Technol. 20 054018
    [28]
    He X X et al 2017 J. Hazard. Mater. 326 101
    [29]
    Wang T C et al 2016 Water Res. 89 28
    [30]
    Duan L J et al 2018 Plasma Sci. Technol. 20 054009
    [31]
    Du X D et al 2017 Chem. Eng. J. 313 1023
    [32]
    Wang T C et al 2017 Environ. Sci. Pollut. Res. 24 21591
    [33]
    Gu J M et al 2018 Nanoscale 10 17722
    [34]
    Hu X Y et al 2016 Appl. Surf. Sci. 362 329
    [35]
    Chen Q H, Wu S N and Xin Y J 2016 Chem. Eng. J. 302 377
  • Related Articles

    [1]Jingyu REN (任景俞), Nan JIANG (姜楠), Kefeng SHANG (商克峰), Na LU (鲁娜), Jie LI (李杰), Yan WU (吴彦). Evaluation of trans-ferulic acid degradation by dielectric barrier discharge plasma combined with ozone in wastewater with different water quality conditions[J]. Plasma Science and Technology, 2019, 21(2): 25501-025501. DOI: 10.1088/2058-6272/aaef65
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Yuchuan QIN (秦豫川), Shulou QIAN (钱树楼), Cheng WANG (王城), Weidong XIA (夏维东). Effects of nitrogen on ozone synthesis in packed-bed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(9): 95501-095501. DOI: 10.1088/2058-6272/aac203
    [4]Ernest GNAPOWSKI, Sebastian GNAPOWSKI, Jaros|aw PYTKA. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes[J]. Plasma Science and Technology, 2018, 20(8): 85505-085505. DOI: 10.1088/2058-6272/aac1b6
    [5]Ying CAO (曹颖), Jie LI (李杰), Nan JIANG (姜楠), Yan WU (吴彦), Kefeng SHANG (商克峰), Na LU (鲁娜). The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5): 54018-054018. DOI: 10.1088/2058-6272/aaa3d5
    [6]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [7]ZHANG Yu (张宇), LIU Lijuan (刘莉娟), LI Ben (李犇), OUYANG Jiting (欧阳吉庭). Wire-to-Plate Surface Dielectric Barrier Discharge and Induced Ionic Wind[J]. Plasma Science and Technology, 2016, 18(6): 634-640. DOI: 10.1088/1009-0630/18/6/09
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]QU Guangzhou(屈广周), LIANG Dongli(梁东丽), QU Dong(曲东), HUANG Yimei(黄懿梅), LI Jie(李杰). Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol[J]. Plasma Science and Technology, 2014, 16(6): 608-613. DOI: 10.1088/1009-0630/16/6/13
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
  • Cited by

    Periodical cited type(17)

    1. Mikeš, J., Pekárek, S., Hanuš, O. Combined effects of electrode geometry and airflow streamlines patterns on ozone production of a cylindrical dielectric barrier discharge. Electrochemistry Communications, 2025. DOI:10.1016/j.elecom.2025.107873
    2. Zhang, J., Zhu, M., Zhang, C. Dynamic of mode transition in air surface micro-discharge plasma: reactive species in confined space. Plasma Science and Technology, 2025, 27(1): 015402. DOI:10.1088/2058-6272/ad862c
    3. Ali, N.N., Alayan, H.M., AbdulRazak, A.A. et al. Modeling and optimizing phenol degradation in aqueous solution using post discharge DBD plasma treatment. Desalination and Water Treatment, 2025. DOI:10.1016/j.dwt.2025.100993
    4. Haosheng, J., Shiyun, L., Hengrui, L. et al. Discharge Characteristics of DBD with Contact Electrodes at Atmospheric Pressure in Quiescent Air. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7405-4_28
    5. Giotis, K., Svarnas, P., Amanatides, E. et al. Ionization wave propagation and cathode sheath formation due to surface dielectric-barrier discharge sustained in pulsed mode. Plasma Science and Technology, 2023, 25(11): 115402. DOI:10.1088/2058-6272/acdb52
    6. Tański, M., Reza, A., Przytuła, D. et al. Ozone Generation by Surface Dielectric Barrier Discharge. Applied Sciences (Switzerland), 2023, 13(12): 7001. DOI:10.3390/app13127001
    7. Mikeš, J., Soukup, I., Pekárek, S. A 3D Numerical Study of the Surface Dielectric Barrier Discharge Initial Phase. Mathematics, 2023, 11(4): 1025. DOI:10.3390/math11041025
    8. Mikeš, J., Pekárek, S., Hanuš, O. Surface Dielectric Barrier Discharge in a Cylindrical Configuration–Effect of Airflow Orientation to the Microdischarges. Ozone: Science and Engineering, 2023, 45(1): 2-18. DOI:10.1080/01919512.2021.2016369
    9. Zhao, Q., Mao, B., Bai, X. et al. Experimental investigation of the discharge and thermal characteristics of an alternating current dielectric-barrier discharge plasma reactor. Applied Thermal Engineering, 2022. DOI:10.1016/j.applthermaleng.2022.119276
    10. Xu, H., Zhu, F., Liu, Y. et al. Effects of the ground-electrode temperature on the plasma physicochemical processes and biological inactivation functions involved in surface dielectric barrier discharge. Plasma Sources Science and Technology, 2022, 31(11): 115010. DOI:10.1088/1361-6595/ac9d63
    11. Huang, L., Guo, L., Qi, Y. et al. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas, 2021, 28(12): 123501. DOI:10.1063/5.0068094
    12. ZENG, X., ZHANG, Y., GUO, L. et al. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Science and Technology, 2021, 23(8): 085501. DOI:10.1088/2058-6272/ac0244
    13. Pekárek, S., Mikeš, J., Červenka, M. et al. Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration. Plasma Chemistry and Plasma Processing, 2021, 41(3): 779-792. DOI:10.1007/s11090-021-10154-x
    14. Xi, W., Wang, W., Liu, Z. et al. Mode transition of air surface micro-discharge and its effect on the water activation and antibacterial activity. Plasma Sources Science and Technology, 2020, 29(9): 095013. DOI:10.1088/1361-6595/aba7ef
    15. Homola, T., Prukner, V., Hoffer, P. et al. Multi-hollow surface dielectric barrier discharge: An ozone generator with flexible performance and supreme efficiency. Plasma Sources Science and Technology, 2020, 29(9): 095014. DOI:10.1088/1361-6595/aba987
    16. Yuan, D., Zhang, G., Ling, Z. et al. Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109351
    17. Mikheyev, P.A., Demyanov, A.V., Kochetov, I.V. et al. Ozone and oxygen atoms production in a dielectric barrier discharge in pure oxygen and O2/CH4 mixtures. Modeling and experiment. Plasma Sources Science and Technology, 2020, 29(1): 015012. DOI:10.1088/1361-6595/ab5da3

    Other cited types(0)

Catalog

    Article views (147) PDF downloads (512) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return