Advanced Search+
Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
Citation: Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f

An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy

Funds: The authors are grateful for the financial support provided by National Natural Science Foundation of China (11704372) and Anhui Provincial Natural Science Foundation (1708085QF130).
More Information
  • Received Date: July 29, 2018
  • Laser-induced breakdown spectroscopy has become a general-purpose technique, and internal standard calibration is a common method for quantitative analysis. Calibration models should be reconstructed for different systems and application environments. This study presents an efficient procedure in the construction and selection of calibration models for LIBS analysis. The procedure concludes data preprocess, calibration model construction, and concentration calculation. These steps can be programmed without manual intervention. Results of the quantitative analysis of Ni-based alloys using the proposed procedure are presented in this study. Ten elements are calibrated, and most have an average relative standard error of less than 10%. The proposed procedure is an effective process for constructing and selecting calibration models.
  • [1]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [2]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol. 17 617
    [3]
    Wang Z et al 2014 Front Phys. 9 419
    [4]
    Li K H et al 2015 J. Anal. At. Spectrom. 30 1623
    [5]
    Zhao S X et al 2018 Plasma Sci. Technol. 20 035502
    [6]
    Sun D X et al 2014 Plasma Sci. Technol. 16 374
    [7]
    El Haddad J, Canioni L and Bousquet B 2014 Spectrochim. Acta B 101 171
    [8]
    Mermet J M 2010 Spectrochim. Acta B 65 509
    [9]
    Tognoni E et al 2010 Spectrochim. Acta B 65 1
    [10]
    Cheng X et al 2017 Appl. Opt. 56 9144
    [11]
    Sobron P, Wang A and Sobron F 2012 Spectrochim. Acta B 68 1
    [12]
    Sun L X and Yu H B 2009 Spectrochim. Acta B 64 278
    [13]
    Kramida A et al 2015 NIST Atomic Spectra Database (Gaithersburg, MD: National Institute of Standards and Technology)
    [14]
    Pan C Y et al 2016 Appl. Spectrosc. 70 702
    [15]
    Musazzi S and Perini U 2014 Laser-Induced Breakdown Spectroscopy: Theory and Applications (Berlin: Springer)
    [16]
    Wiens R C et al 2013 Spectrochim. Acta B 82 1
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [4]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [5]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [6]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [7]A. N. KLEIN, R. P. CARDOSO, H. C. PAVANATI, C. BINDER, A. M. MALISKA, G. HAMMES, D. FUS~AO, A. SEEBER, et al. DC Plasma Technology Applied to Powder Metallurgy: an Overview[J]. Plasma Science and Technology, 2013, 15(1): 70-81. DOI: 10.1088/1009-0630/15/1/12
    [8]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [9]YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14
    [10]HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580.
  • Cited by

    Periodical cited type(2)

    1. Wei, Y., Chen, S., Wang, Y. et al. Research progress on refractory metal and metallic carbide/oxide powder preparation techniques | [难 熔 金 属 及 金 属 碳 /氧 化 物 粉 体 制 备 技 术 研 究 进 展]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028719. DOI:10.7527/S1000-6893.2023.28719
    2. Zhu, H.-L., Li, X.-Y., Tong, H.-H. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma | [三维数值模拟射频热等离子体的物理场分布]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(15): 155202. DOI:10.7498/aps.70.20202135

    Other cited types(0)

Catalog

    Article views (150) PDF downloads (265) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return