Advanced Search+
Harse SATTAR (哈里斯), Liying SUN (孙立影), Muhammad IMRAN (伊穆), Ran HAI (海然), Ding WU (吴鼎), Hongbin DING (丁洪斌). Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites[J]. Plasma Science and Technology, 2019, 21(3): 34019-034019. DOI: 10.1088/2058-6272/aaf712
Citation: Harse SATTAR (哈里斯), Liying SUN (孙立影), Muhammad IMRAN (伊穆), Ran HAI (海然), Ding WU (吴鼎), Hongbin DING (丁洪斌). Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites[J]. Plasma Science and Technology, 2019, 21(3): 34019-034019. DOI: 10.1088/2058-6272/aaf712

Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11475039, 11705020, 11605023) and Liaoning Provincial Natural Science Foundation of China (No. 20170540153).
More Information
  • Received Date: August 12, 2018
  • The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples. This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy (LIBS). The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances (LIs). Calibration curves for both Ag(I) line (4d105s2S1/2 →4d10 5p2P1/2 at 338.28 nm) and Zn(I) line (4s5s3S1 →4s4p3P2 at 481.053 nm) have been determined at LI of 5.86×1010 W cm -2 . Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting (OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R 2 =0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.
  • [1]
    Bubb D M et al 2002 J. Appl. Phys. 91 9809
    [2]
    Capitelli F et al 2002 Geoderma 106 45
    [3]
    Tognoni E et al 2002 Spectrochim. Acta B 57 1115
    [4]
    Shaikh N M et al 2006 J. Appl. Phys. 100 073102
    [5]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [6]
    Michel A P M 2010 Spectrochim. Acta B 65 185
    [7]
    Kadachi A N and Al-Eshaikh M A 2015 Spectrosc. Lett. 48 403
    [8]
    Liu D and Zhang D M 2008 Chin. Phys. Lett. 25 1368
    [9]
    Sun L X and Yu H B 2009 Talanta 79 388
    [10]
    Hahn D and Wand Omenetto N 2012 Appl. Spectrosc. 66 347
    [11]
    Thompson J R et al 2006 J. Geophys. Res. Planets 111 E05006
    [12]
    Sallé B et al 2006 Spectrochim. Acta B 61 301
    [13]
    Anabitarte F, Cobo A and Lopez-Higuera J M 2012 ISRN Spectrosc. 2012 285240
    [14]
    Windom B C and Hahn D W 2009 J. Anal. At. Spectrom. 24 1665
    [15]
    Zheng L J et al 2016 Spectrochim. Acta B 118 66
    [16]
    Bustamante M F, Rinaldi C A and Ferrero J C 2002 Spectrochim. Acta B 57 303
    [17]
    Fortes F J et al 2005 Anal. Chim. Acta 554 136
    [18]
    Aguilera J A et al 2009 Spectrochim. Acta B 64 993
    [19]
    D’Andrea E D et al 2014 Spectrochim. Acta B 99 52
    [20]
    Yuan T B et al 2014 Anal. Chim. Acta 807 29
    [21]
    Clegg S M et al 2009 Spectrochim. Acta B 64 79
    [22]
    Fornarini L et al 2005 Spectrochim. Acta B 60 1186
    [23]
    Margetic V et al 2000 Spectrochim. Acta B 55 1771
    [24]
    Margetic V, Niemax K and Hergenr?der R 2001 Spectrochim. Acta B 56 1003
    [25]
    Rehan I, Gondal M A and Rehan K 2018 Talanta 182 443
    [26]
    Adrain R S and Watson J 1984 J. Phys. D: Appl. Phys. 17 1915
    [27]
    Li H K et al 2008 Trans. Nonferrous Met. Soc. China 18 222
    [28]
    Mohamed W T Y 2008 Opt. Laser Technol. 40 30
    [29]
    Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
    [30]
    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press)
    [31]
    Lu Y F, Tao Z B and Hong M H 1999 Japan. J. Appl. Phys. 38 2958
    [32]
    Hafeez S, Shaikh N M and Baig M A 2008 Laser Part. Beams 26 41
    [33]
    Reader J et al 1980 Wavelengths and Transition Probabilities for Atoms and Atomic Ions (Washington DC: US Department of Commerce/National Institute of Standards and Technology) NSRDS-NBS 68
    [34]
    Iqbal J, Ahmed R and Baig M A 2017 Laser Phys. 27 046101
    [35]
    Shaikh N M, Hafeez S and Baig M A 2007 Spectrochim. Acta B 62 1311
    [36]
    Musadiq M et al 2013 Int. J. Eng. Technol. 2 32
    [37]
    Shaikh N M et al 2006 J. Phys. D: Appl. Phys. 39 1384
    [38]
    Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305
    [39]
    Dimitrijevi? M S and Sahal–Bréchot S 1999 Astron. Astrophys. Suppl. Ser. 140 193
    [40]
    Dimitrijevi? M S and Sahal–Bréchot S 2003 At. Data Nucl. Data 85 269
    [41]
    Qindeel R et al 2010 Eur. Phys. J. Appl. Phys. 50 30701
    [42]
    McWhirter R W P, Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic) p 206
  • Related Articles

    [1]Yunsong DONG (董云松), Dongguo KANG (康洞国), Wei JIANG (蒋炜), Zhicheng LIU (刘志诚), Zhongjing CHEN (陈忠靖), Xing ZHANG (张兴), Xin LI (李欣), Chuankui SUN (孙传奎), Chuansheng YIN (尹传盛), Jianjun DONG (董建军), Zhiwen YANG (杨志文), Yudong PU (蒲昱东), Ji YAN (晏骥), Bo YU (余波), Tianxuan HUANG (黄天晅), Wenyong MIAO (缪文勇), Zhensheng DAI (戴振生), Fengjun GE (葛峰峻), Dong YANG (杨冬), Feng WANG (王峰), Jiamin YANG (杨家敏), Shaoen JIANG (江少恩). Study of the asymmetry of hot-spot self-emission imaging of inertial confinement fusion implosion driven by high-power laser facilities[J]. Plasma Science and Technology, 2020, 22(8): 84003-084003. DOI: 10.1088/2058-6272/ab9804
    [2]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [3]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [4]MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权), LIU Wei (刘伟), OU Wei (欧巍), HUANG Yi (黄毅). Magnetic Inertial Confinement Fusion (MICF)[J]. Plasma Science and Technology, 2016, 18(11): 1055-1063. DOI: 10.1088/1009-0630/18/11/01
    [5]YANG Jinwen (杨进文), LI Tingshuai (李廷帅), YI Tao (易涛), WANG Chuanke (王传珂), YANG Ming (杨鸣), YANG Weiming (杨为明), LIU Shenye (刘慎业), JIANG Shaoen (江少恩), DING Yongkun (丁永坤). Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility[J]. Plasma Science and Technology, 2016, 18(10): 1044-1048. DOI: 10.1088/1009-0630/18/10/13
    [6]JING Longfei (景龙飞), LI Hang (黎航), LIN Zhiwei (林雉伟), LI Liling (李丽灵), KUANG Longyu (况龙钰), HUANG Yunbao (黄运保), ZHANG Lu (张璐), HUANG Tianxuan (黄天晅), JIANG Shao’en (江少恩), DING Yongkun (丁永坤). Influence of Capsule Offset on Radiation Asymmetry in Shenguang-II Laser Facility[J]. Plasma Science and Technology, 2015, 17(10): 842-846. DOI: 10.1088/1009-0630/17/10/06
    [7]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), XU Yang (徐杨), FENG Changle (冯昌乐). Limit Analysis for the Mechanical Structure of the ITER Neutron Shielding Block[J]. Plasma Science and Technology, 2013, 15(4): 391-396. DOI: 10.1088/1009-0630/15/4/15
    [8]HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), WANG Xiaoyu (王晓宇), K. IOKI, DU Shuangsong (杜双松), JI Xiang (戢翔), FENG Changle (冯昌乐), XU Yang (徐扬). Static Structural Analysis for a Neutron Shielding Block in ITER[J]. Plasma Science and Technology, 2013, 15(2): 142-147. DOI: 10.1088/1009-0630/15/2/13
    [9]HU Guangyue (胡广月), ZHANG Xiaoding (张小丁), ZHENG Jian (郑坚), LEI An-le (雷安乐), SHEN Baifei (沈百飞), XU Zhizhan, et al. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility[J]. Plasma Science and Technology, 2012, 14(10): 864-870. DOI: 10.1088/1009-0630/14/10/02
    [10]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.
  • Cited by

    Periodical cited type(12)

    1. Jiang, Y., Ma, S., Li, Q. et al. Non-uniform pinching of short-gap intermediate frequency vacuum arc without controlled magnetic field. Vacuum, 2024. DOI:10.1016/j.vacuum.2024.113394
    2. Yan, C., An, T., Luo, B. et al. An Improved Black-Box Model for Low-Current AC Arcs in Vacuum Interrupters. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(2): 1030-1037. DOI:10.1109/TDEI.2023.3316154
    3. Tong, Z., Wu, S., Shi, S. et al. 3D Pic-Mcc Simulation of Particles Expansion for Two Kinds of Curved Contact and Butt Contact in the Post-Arc Phase. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792620
    4. Tong, Z., Wu, J., Jiang, X. et al. Study on Intermediate-Frequency Vacuum Arc Recovery Characteristics of Curved Contact With Different Bending Amplitudes. IEEE Transactions on Plasma Science, 2024, 52(9): 4506-4513. DOI:10.1109/TPS.2024.3487347
    5. Ziang, T., Shengxiu, W., Enyao, Q. et al. 3D Pic-Mcc Simulation of Particles Expansion for Straight Curved Contact and Butt Contact in the Post-arc Phase. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-99-7413-9_20
    6. Huang, C., Yin, Y., Liu, S. et al. Study on impact of gap difference on plasma distribution of direct current vacuum circuit breaker with double-break. AIP Advances, 2023, 13(11): 115226. DOI:10.1063/5.0175155
    7. Tong, Z., Shi, S., Wang, X. et al. Research on intermediate-frequency vacuum arc recovery characteristics of curved contact. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2023. DOI:10.23919/ISDEIV55268.2023.10200597
    8. Tong, Z., Wu, J., Li, K. et al. A Plasma Diagnosis Method for a Vacuum Arc Under Curved Contact. IEEE Transactions on Plasma Science, 2022, 50(9): 2700-2708. DOI:10.1109/TPS.2022.3193610
    9. Yang, J., Shu, F. Closed-loop control design of intermediate frequency modulated lower limb rehabilitation electrical stimulation system based on NARMAX model. 2022. DOI:10.1109/TOCS56154.2022.10016114
    10. Jiang, Y., Wu, J., Li, Q. et al. Influence of metal vapor on post-arc breakdown for intermediate frequency vacuum arc. Vacuum, 2021. DOI:10.1016/j.vacuum.2021.110551
    11. Tong, Z., Wu, J., Chen, J. et al. Characteristics of Vacuum Arc Voltage and Material Transfer with Different Contact Materials. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2020. DOI:10.1109/ISDEIV46977.2021.9587258
    12. Tong, Z., Wu, J., Li, K. Numerical Simulation of Intermediate-Frequency Vacuum Arc. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3014373

    Other cited types(0)

Catalog

    Article views (200) PDF downloads (190) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return