Advanced Search+
Harse SATTAR (哈里斯), Liying SUN (孙立影), Muhammad IMRAN (伊穆), Ran HAI (海然), Ding WU (吴鼎), Hongbin DING (丁洪斌). Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites[J]. Plasma Science and Technology, 2019, 21(3): 34019-034019. DOI: 10.1088/2058-6272/aaf712
Citation: Harse SATTAR (哈里斯), Liying SUN (孙立影), Muhammad IMRAN (伊穆), Ran HAI (海然), Ding WU (吴鼎), Hongbin DING (丁洪斌). Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites[J]. Plasma Science and Technology, 2019, 21(3): 34019-034019. DOI: 10.1088/2058-6272/aaf712

Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11475039, 11705020, 11605023) and Liaoning Provincial Natural Science Foundation of China (No. 20170540153).
More Information
  • Received Date: August 12, 2018
  • The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples. This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy (LIBS). The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances (LIs). Calibration curves for both Ag(I) line (4d105s2S1/2 →4d10 5p2P1/2 at 338.28 nm) and Zn(I) line (4s5s3S1 →4s4p3P2 at 481.053 nm) have been determined at LI of 5.86×1010 W cm -2 . Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting (OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R 2 =0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.
  • [1]
    Bubb D M et al 2002 J. Appl. Phys. 91 9809
    [2]
    Capitelli F et al 2002 Geoderma 106 45
    [3]
    Tognoni E et al 2002 Spectrochim. Acta B 57 1115
    [4]
    Shaikh N M et al 2006 J. Appl. Phys. 100 073102
    [5]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [6]
    Michel A P M 2010 Spectrochim. Acta B 65 185
    [7]
    Kadachi A N and Al-Eshaikh M A 2015 Spectrosc. Lett. 48 403
    [8]
    Liu D and Zhang D M 2008 Chin. Phys. Lett. 25 1368
    [9]
    Sun L X and Yu H B 2009 Talanta 79 388
    [10]
    Hahn D and Wand Omenetto N 2012 Appl. Spectrosc. 66 347
    [11]
    Thompson J R et al 2006 J. Geophys. Res. Planets 111 E05006
    [12]
    Sallé B et al 2006 Spectrochim. Acta B 61 301
    [13]
    Anabitarte F, Cobo A and Lopez-Higuera J M 2012 ISRN Spectrosc. 2012 285240
    [14]
    Windom B C and Hahn D W 2009 J. Anal. At. Spectrom. 24 1665
    [15]
    Zheng L J et al 2016 Spectrochim. Acta B 118 66
    [16]
    Bustamante M F, Rinaldi C A and Ferrero J C 2002 Spectrochim. Acta B 57 303
    [17]
    Fortes F J et al 2005 Anal. Chim. Acta 554 136
    [18]
    Aguilera J A et al 2009 Spectrochim. Acta B 64 993
    [19]
    D’Andrea E D et al 2014 Spectrochim. Acta B 99 52
    [20]
    Yuan T B et al 2014 Anal. Chim. Acta 807 29
    [21]
    Clegg S M et al 2009 Spectrochim. Acta B 64 79
    [22]
    Fornarini L et al 2005 Spectrochim. Acta B 60 1186
    [23]
    Margetic V et al 2000 Spectrochim. Acta B 55 1771
    [24]
    Margetic V, Niemax K and Hergenr?der R 2001 Spectrochim. Acta B 56 1003
    [25]
    Rehan I, Gondal M A and Rehan K 2018 Talanta 182 443
    [26]
    Adrain R S and Watson J 1984 J. Phys. D: Appl. Phys. 17 1915
    [27]
    Li H K et al 2008 Trans. Nonferrous Met. Soc. China 18 222
    [28]
    Mohamed W T Y 2008 Opt. Laser Technol. 40 30
    [29]
    Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
    [30]
    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press)
    [31]
    Lu Y F, Tao Z B and Hong M H 1999 Japan. J. Appl. Phys. 38 2958
    [32]
    Hafeez S, Shaikh N M and Baig M A 2008 Laser Part. Beams 26 41
    [33]
    Reader J et al 1980 Wavelengths and Transition Probabilities for Atoms and Atomic Ions (Washington DC: US Department of Commerce/National Institute of Standards and Technology) NSRDS-NBS 68
    [34]
    Iqbal J, Ahmed R and Baig M A 2017 Laser Phys. 27 046101
    [35]
    Shaikh N M, Hafeez S and Baig M A 2007 Spectrochim. Acta B 62 1311
    [36]
    Musadiq M et al 2013 Int. J. Eng. Technol. 2 32
    [37]
    Shaikh N M et al 2006 J. Phys. D: Appl. Phys. 39 1384
    [38]
    Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305
    [39]
    Dimitrijevi? M S and Sahal–Bréchot S 1999 Astron. Astrophys. Suppl. Ser. 140 193
    [40]
    Dimitrijevi? M S and Sahal–Bréchot S 2003 At. Data Nucl. Data 85 269
    [41]
    Qindeel R et al 2010 Eur. Phys. J. Appl. Phys. 50 30701
    [42]
    McWhirter R W P, Huddlestone R H and Leonard S L 1965 Plasma Diagnostic Techniques (New York: Academic) p 206
  • Related Articles

    [1]Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [4]Huijuan WANG (王慧娟), Guangshun ZHOU (周广顺), He GUO (郭贺), Cong GENG (耿聪). Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process[J]. Plasma Science and Technology, 2017, 19(1): 15504-015504. DOI: 10.1088/1009-0630/19/1/015504
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]JIA Shenli (贾申利), LI Rui (李瑞), LIU Jianjun (刘建军), LI Xingwen (李兴文), et al.. The Plasma Channel Evolution Characteristics of Pulsed Flashlamps Working in an Array[J]. Plasma Science and Technology, 2013, 15(7): 640-643. DOI: 10.1088/1009-0630/15/7/07
    [7]U. N. PAL, Pooja GULATI, Ram PRAKASH, Mahesh KUMAR, V. SRIVASTAVA, S. KONAR. Analysis of Power in an Argon Filled Pulsed Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(7): 635-639. DOI: 10.1088/1009-0630/15/7/06
    [8]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [9]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08
    [10]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
  • Cited by

    Periodical cited type(2)

    1. Jang, I., Lee, J., Jeong, S. Real-Time Interface Prediction During Laser Processing of Thin Film Layers by High-Resolution Femtosecond Laser-Induced Breakdown Spectroscopy. International Journal of Precision Engineering and Manufacturing - Green Technology, 2025. DOI:10.1007/s40684-025-00715-2
    2. Zhao, D., Zhu, H., Zhang, Z. et al. Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface. Journal of Materials Science, 2022. DOI:10.1007/s10853-022-07507-y

    Other cited types(0)

Catalog

    Article views (200) PDF downloads (190) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return