Advanced Search+
Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
Citation: Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841

Evolution simulation of lightning discharge based on a magnetohydrodynamics method

Funds: This study is supported by National Natural Science Foundation of China (No. 51475369).
More Information
  • Received Date: January 07, 2018
  • In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user-defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.
  • [1]
    Ding N et al 2013 Acta Aeronaut. Astronaut. Sin. 34 301 (in Chinese)
    [2]
    Wang F S et al 2016 Compos. Struct. 145 226
    [3]
    Broc A et al 2006 Aerosp. Sci. Technol. 10 700
    [4]
    Larsson A 2002 C. R. Phys. 3 1423
    [5]
    Chen M, Lu T and Du Y 2015 J. Atmos. Sol.?Terr. Phys. 122 1
    [6]
    Uman M A 2005 Proc. IEEE 59 457
    [7]
    Pietronero L and Wiesmann H J 1988 Z. Phys. B 70 87
    [8]
    Charalambakos V P et al 2006 Computer simulation of lightning strokes 28th Int. Conf. on Lightning Protection (Kanazawa, Japan)
    [9]
    Gulyás A and Szedenik N 2009 J. Electrost. 67 518
    [10]
    Schnack D D 2009 Lectures in Magnetohydrodynamics: with an Appendix on Extended MHD (Berlin: Springer)
    [11]
    Ghasemi S E et al 2014 J. Electrost. 72 47
    [12]
    Hatami M 2017 Adv. Powder Technol. 28 890
    [13]
    Tang W H et al 2017 Int. J. Heat Mass Transfer 115 430
    [14]
    Hatami M and Jing D 2017 Appl. Therm. Eng. 121 1040
    [15]
    Hsu K C, Etemadi K and Pfender E 1983 J. Appl. Phys. 54 1293
    [16]
    Lago F et al 2004 J. Phys. D: Appl. Phys. 37 883
    [17]
    Gonzalez J J et al 2005 J. Phys. D: Appl. Phys. 38 306
    [18]
    Lago F et al 2006 J. Phys. D: Appl. Phys. 39 2294
    [19]
    Chemartin L et al 2009 Atmos. Res. 91 371
    [20]
    Chemartin L et al 2008 Analysis of the effects of altitude on arc column behavior by CFD modelling Proc. 17th Int. Conf. on Gas Discharges and their Applications (Cardiff, UK) (IEEE)
    [21]
    Chemartin L et al 2011 J. Phys. D: Appl. Phys. 44 194003
    [22]
    Chemartin L et al 2012 Aerosp. Lab 5 1
    [23]
    Tholin L, Chemartin P and Lalande F 2013 Meas. Tech. 56 164
    [24]
    Trelles J P et al 2009 J. Therm. Spray Technol. 18 728
    [25]
    Capitelli M et al 2000 Eur. Phys. J. D 11 279
    [26]
    Ashgriz N et al 2002 An introduction to computational fluid dynamics ed J Saleh Fluid Flow Handbook (New York: McGraw?Hill)
    [27]
    Hatami M et al 2014 J. Taiwan Inst. Chem. Eng. 45 2238
    [28]
    Mosayebidorcheh S et al 2016 Particuology 26 95
    [29]
    Naghizadeh-Kashani Y, Cressault Y and Gleizes A 2002 J. Phys. D: Appl. Phys. 35 2925
    [30]
    Goodarzi M, Choo R and Toguri J M 1997 J. Phys. D: Appl. Phys. 30 2744
    [31]
    ARP5416 SAE 2005 Aircraft Lightning Test Methods (Warrendale, PA: Society of Automotive Engineers)
    [32]
    ARP5412A SAE 2005 Aircraft Lightning Environment and Related Test Waveforms (Warrendale, PA: Society of Automotive Engineers)
  • Related Articles

    [1]Xu ZHOU, Xianhui CHEN, Taohong YE, Minming ZHU, Weidong XIA. Quasi-direct numerical simulations of the flow characteristics of a thermal plasma reactor with counterflow jet[J]. Plasma Science and Technology, 2023, 25(7): 075403. DOI: 10.1088/2058-6272/acb9d8
    [2]Xu ZHOU (周旭), Xianhui CHEN (陈仙辉), Taohong YE (叶桃红), Minming ZHU (朱旻明). Large eddy simulation on the flow characteristics of an argon thermal plasma jet[J]. Plasma Science and Technology, 2021, 23(12): 125405. DOI: 10.1088/2058-6272/ac1f81
    [3]Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f
    [4]LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08
    [5]CAO Xiuquan (曹修全), YU Deping (余德平), XIANG Yong (向勇), YAO Jin (姚进), MIAO Jianguo (苗建国). Influence of the Laminar Plasma Torch Construction on the Jet Characteristics[J]. Plasma Science and Technology, 2016, 18(7): 740-743. DOI: 10.1088/1009-0630/18/7/07
    [6]XU Qian(徐倩), DING Rui(丁锐), YANG Zhongshi(杨钟时), NIU Guojian(牛国鉴), K. OHYA, LUO Guangnan(罗广南). PIC-EDDY Simulation of Different Impurities Deposition in Gaps of Carbon Tiles[J]. Plasma Science and Technology, 2014, 16(6): 562-566. DOI: 10.1088/1009-0630/16/6/04
    [7]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [8]YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05
    [9]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05
    [10]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.
  • Cited by

    Periodical cited type(1)

    1. Zhou, X., Chen, X., Ye, T. et al. Quasi-direct numerical simulations of the flow characteristics of a thermal plasma reactor with counterflow jet. Plasma Science and Technology, 2023, 25(7): 075403. DOI:10.1088/2058-6272/acb9d8

    Other cited types(0)

Catalog

    Article views (204) PDF downloads (928) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return