Advanced Search+
Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f
Citation: Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f

The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet

Funds: This work is supported by National Natural Science Foundation of China under Grant Nos. 51377075 and 51677083.
More Information
  • Received Date: December 30, 2016
  • An atmospheric pressure plasma jet (APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ. Electrical and optical methods are used to characterize the plasma properties. The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrode positions of 10 mm, 40 mm and 80 mm, respectively, and the main discharge and plasma parameters are investigated. It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters. The discharges transit from having two discharge modes, dielectric barrier discharge (DBD) and jet, to having three, corona, DBD and jet, with increase in the distance from the grounded to the high-voltage electrodes. The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV. The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode, while there is no obvious difference in the values of the electron excited temperature (EET) for the three grounded electrode positions.
  • Related Articles

    [1]Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1
    [2]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [3]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [4]Jia TIAN (田甲), Wenzheng LIU (刘文正), Weisheng CUI (崔伟胜), Yongjie GAO (高永杰). Generation characteristics of a metal ion plasma jet in vacuum discharge[J]. Plasma Science and Technology, 2018, 20(8): 85403-085403. DOI: 10.1088/2058-6272/aabedf
    [5]Carlo POGGI, Théo GUILLAUME, Fabrice DOVEIL, Laurence CHÉRIGIER-KOVACIC. Estimation of the Lyman-α signal of the EFILE diagnostic under static or radiofrequency electric field in vacuum[J]. Plasma Science and Technology, 2018, 20(7): 74001-074001. DOI: 10.1088/2058-6272/aabde3
    [6]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [7]LIU Wenzheng(刘文正), WANG Hao(王浩), DOU Zhijun(窦志军). Impact of the Insulator on the Electric Field and Generation Characteristics of Vacuum Arc Metal Plasmas[J]. Plasma Science and Technology, 2014, 16(2): 134-141. DOI: 10.1088/1009-0630/16/2/09
    [8]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [9]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05
    [10]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.

Catalog

    Article views (384) PDF downloads (989) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return